idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
30.07.2018 16:08

TU Berlin: Ein, zwei, drei - viele

Stefanie Terp Stabsstelle Presse, Öffentlichkeitsarbeit und Alumni
Technische Universität Berlin

    Spezieller Detektor misst die exakte Anzahl von Photonen in einem schwachen Lichtpuls

    Für die meisten Menschen ist Licht gleich Licht. Nicht so für die Physiker in der Arbeitsgruppe von Stephan Reitzenstein, vom Institut für Festkörperphysik an der TU Berlin. „Uns interessiert ganz genau, aufgrund welcher Prozesse Licht (also Photonen) emittiert wird. Die sogenannte Photonenstatistik, also wie viele Photonen sind in einem bestimmten Lichtpuls enthalten, gibt uns unter anderem Aufschluss darüber, ob es sich um Laserlicht (sogenanntes kohärentes Licht) oder normales, thermisches Licht (sogenanntes inkohärentes Licht) handelt. Bei starken Lichtquellen ist die Entscheidung zwischen dem kohärenten Licht eines Lasers und dem thermischen Licht zum Beispiel einer Kerze naturgemäß sehr einfach. Komplizierter wird es bei schwachen Lichtpulsen, wie sie von nanophotonischen Lichtquellen ausgesendet werden. Mit den jetzt gemeinsam mit der Physikalisch Technischen Bundesanstalt (PTB) veröffentlichen Forschungsarbeiten ist es erstmals gelungen, ein Messverfahren zu entwickeln, das auch bei extrem schwachen Intensitäten die exakte Anzahl an Photonen misst.

    Normalen Photodioden-Detektoren fehlt die nötige Empfindlichkeit, um einzelne Photonen zu detektieren geschweige denn die exakte Anzahl der Photonen in Lichtpulsen zu bestimmen. Sie können beispielsweise nicht zwischen einer Million oder einer Million plus ein Photonen unterscheiden. Etwas einfacher wird es erstaunlicher Weise wieder bei Einzelphotonenquellen, die man mit so genannten Klick-Detektoren charakterisieren kann. Da weiß man, dass diese immer nur ein Photon emittieren. „Offen blieb bislang der interessante Zwischenbereich, in dem Mikrolaser, schwache Lichtpulse von rund 1 bis 40 Photonen emittieren. Diese speziellen Mikrolaser wurden zusammen mit Kollegen in der Gruppe von Prof. Sven Höfling an der Universität Würzburg entwickelt“, skizziert Elisabeth Schlottmann, Mitarbeiterin in der AG Reitzenstein, die Forschungsthematik.

    „Aufgrund unserer sehr guten und langjährigen Kooperation mit der PTB Berlin konnten wir gemeinsam mit den Kollegen in der Gruppe von Dr. Jörn Beyer einen entsprechenden Detektor, einen sogenannten Transition Edge Detektor, in unseren Labors aufbauen und nutzen“, so die Wissenschaftlerin. Das Detektorsystem, das vom NIST (National Institute of Standards and Technology) in den USA und der PTB entwickelt wurde, wird knapp über dem absoluten Nullpunkt bei einer Temperatur von lediglich 100 Millikelvin betrieben – das entspricht ungefähr minus 273 Grad Celsius. Damit ist es tatsächlich möglich, genau zu messen, ob in einem Lichtpuls ein, zwei oder mehrere Photonen gleichzeitig ankommen. „So einen Detektor kann man nicht einfach kaufen. Weltweit gibt es nur eine Handvoll solcher Detektorsysteme.“, ergänzt Stephan Reitzenstein.

    „Mit diesem Detektor erhalten wir wesentlich tiefergehende Informationen zu einem Lichtpuls als normalerweise möglich. So konnten wir beweisen, dass zwei Mikrolaser, die mit den bisher etablierten Messmethoden vermeintlich dieselben Eigenschaften zeigten, bei jedem Puls eine unterschiedliche Photonenverteilung aufweisen. Dabei bewegt sich die Anzahl der Photonen pro Puls in einer bestimmten Wahrscheinlichkeitsverteilung“, so Elisabeth Schlottmann. Um die genaue Form der Wahrscheinlichkeitsverteilung zu ermitteln, machte die Forscherin viele Millionen Messungen mit einzelnen Pulsen und bestimmte jeweils die exakte Photonenzahl pro Puls. Aus den Ergebnissen fertigte sie eine Art Histogramm, mit dem sich Voraussagen machen lassen, mit welcher Wahrscheinlichkeit, ein bestimmter Mikrolaser bei einem bestimmten Puls eine genau bestimmte Zahl an Photonen emittiert.

    „Der Detektor unterscheidet auch, ob es sich bei den Photonen um chaotisches – also thermisches – Licht handelt oder um eine kohärente Verteilung der Photonen, wie man sie bei Laserlicht erwartet. Damit können wir eine scharfe Trennung der Lichtpulse zwischen Laserlicht und thermischem Licht auch im Quantenregime einzelner Photonen treffen. Interessanter Weise können Laserlicht und thermisches Licht die gleiche Leistung erbringen, sehen aber in dem Photonen-Histogramm ganz anders aus“, weiß Elisabeth Schlottmann.

    „Diese Art von Messungen für Mikrolaser gab es bislang gar nicht. Das ist auch ein interessantes Ergebnis für alle Theoretiker, die Voraussagen gemacht haben, wie die Photonenverteilung bei den Mikrolasern aussehen sollte. Wir können jetzt erstmalig untersuchen, ob die prognostizierte Verteilung der Realität entspricht oder ob die Theoretiker noch einmal scharf nachdenken müssen“, sagt Stephan Reitzenstein, der die Ergebnisse im Rahmen seines ERC Consolidator Grants „EXQUISITE“ erzielt hat.

    Exploring the Photon-Number Distribution of Bimodal Microlasers with a Transition Edge Sensor
    E. Schlottmann, M. von Helversen, H. A. M. Leymann, T. Lettau, F. Krüger, M.Schmidt, C. Schneider, M. Kamp, S. Höfling, J. Beyer, J. Wiersig, and S. Reitzenstein
    Phys. Rev. Applied 9, 064030 (2018).
    DOI:10.1103/PhysRevApplied.9.064030

    Photon-Number-Resolved Measurement of an Exciton-Polariton Condensate
    M. Klaas, E. Schlottmann, H. Flayac, F. P. Laussy, F. Gericke, M. Schmidt, M. v. Helversen, J. Beyer, S. Brodbeck, H. Suchomel, S. Höfling, S. Reitzenstein, and C. Schneider
    Phys. Rev. Lett. 121, 047401 – Published 25 July 2018
    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.047401
    DOI: 10.1103/PhysRevLett.121.047401

    www.tu-berlin.de/?id=197859

    Weitere Informationen erteilt Ihnen gern:
    Prof. Dr. Stephan Reitzenstein
    TU Berlin
    Institut für Festkörperphysik
    Fachgebiet Optoelektronik und Quantenbauelemente
    Tel.: 030 314-79704
    Email: stephan.reitzenstein@physik.tu-berlin.de


    Weitere Informationen:

    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.047401
    http://www.tu-berlin.de/?id=197859


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).