idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
27.12.2018 17:41

Richtungsweisend: Magnetospirillum zur Mikrobe des Jahres 2019 gekürt

Dr. Kerstin Elbing Geschäftsstelle Berlin
Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

    Magnetische Bakterien leben in Tümpeln und Meeren. Eine Kette winziger Magnete hilft ihnen bei der Orientierung im Wasser. Faszinierende Studien an Magnetospirillum liefern Grundlagen für die Erforschung des Magnetsinns bei Tieren und dienen als Modell für die Biosynthese kleiner Organellen. Mit modernen Methoden verleihen die Forscher den winzigen Magneten zusätzliche Eigenschaften für technische und medizinische Anwendungen, die synthetische Nanopartikel übertreffen.

    Ein magnetisches Bakterium? Mit dieser Entdeckung stieß der Italiener Salvatore Bellini 1963 auf Unglauben. Doch mit der Verbreitung des Elektronenmikroskops bestätigte Richard Blakemore zwölf Jahre später seine faszinierenden Beobachtungen: In Schlammproben sah er Mikroorganismen mit Ketten magnetischer Kristalle. Sie richten sich wie eine Kompassnadel im magnetischen Feld aus.

    Spezielle Enzyme transportieren Eisenionen aus der Umgebung in die Bakterienzelle. Es bilden sich Ketten aus 15 bis 30 Eisenoxid-Kristallen, die zusammen als Magnet wirken. Ein Zellskelett aus langen Proteinfäden, ähnlich aufgebaut wie unsere Muskeln, hält die Kristalle in der Zellmitte und sortiert sie bei der Zellteilung gleichmäßig.

    Zusammen mit einem Sauerstoffsensor orientieren sich die Bakterien so im Wasser: Sie suchen gezielt Schichten mit dem für sie geeigneten geringen Sauerstoffgehalt auf. Die magnetischen Pole der Erde helfen ihnen, sich in der richtigen Wassertiefe auszurichten. Dank der detaillierten Erkenntnisse zur Biosynthese und Funktion der Magnetosomen gilt Magnetospirillum mittlerweile als wichtiger Modellorganismus für die Bildung bakterieller Organellen.

    Für Biotechnologie und Medizin bietet Magnetospirillum zudem faszinierende Möglichkeiten: Die winzigen Magnete haben eine einheitliche Größe, Form und hohe Magnetisierung, die synthetische Nanopartikel nicht erreichen. Fremde Moleküle, gekoppelt an die Magnetosomenpartikel können ihnen zusätzliche nützliche Eigenschaften verleihen. In Laborversuchen übertreffen isolierte Magnetosomen die Wirksamkeit kommerzieller magnetischer Kontrastmittel deutlich; dies macht sie für die Magnetresonanztomographie (MRT) oder Bildgebungsverfahren in Forschung und medizinischer Diagnostik interessant. Magnetosomen erzeugen zudem in Zellen oder Geweben Wärme, wenn ein starkes Magnetfeld angelegt wird – in Tierversuchen ließen sich damit Tumoren verkleinern. Forscher konnten den kompletten Biosyntheseweg aus Magnetospirillum in fremde Bakterien übertragen. So lassen sich möglicherweise Zellen künstlich magnetisieren und entsprechend „steuern“.

    ************
    Über die Mikrobe des Jahres

    Die Mikrobe des Jahres weist auf die bedeutsame Rolle der Mikroorganismen für die Ökologie, Gesundheit, Ernährung und Wirtschaft hin. Mikrobiologen der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) wählen sie jedes Jahr aus, um auf die Vielfalt der mikrobiologischen Welt aufmerksam zu machen.

    Die VAAM ist Gründungsmitglied im VBIO und vertritt über 3500 mikrobiologisch orientierte Wissenschaftlerinnen und Wissenschaftler aus Forschung und Industrie. Die Bandbreite der Forschung reicht von Bakterien, Archaeen und Pilzen in allen Ökosystemen und in Lebensmitteln über Krankheitserreger bis hin zu Genomanalysen und industrieller Nutzung von Mikroorganismen, ihren Enzymen und Stoffwechselprodukten.

    Informationen, Experten-Kontakte, Bildmaterial:

    Dr. Anja Störiko |Tel. 06192 23605 | info@mikrobe-des-jahres.de | http://www.mikrobe-des-jahres.de
    Dr. Katrin Muth | Geschäftsstelle der VAAM: |Mörfelder Landstraße 125 | 60598 Frankfurt am Main | Tel: 069 66056720 | http://www.vaam.de
    Dr. Kerstin Elbing | Geschäftsstelle Berlin des VBIO | Luisenstraße 58/59 | 10117 Berlin | Tel: 030 27891916 | http://www.vbio.de

    Weitere Informationen:
    http://mikrobe-des-jahres.de - Hier erhalten Sie weiteres Bildmaterial zur Mikrobe des Jahres.

    ************
    INTERVIEW:
    Magnetospirillum-Forscher der ersten Stunde
    Fragen an Prof. Dr. Dirk Schüler, Universität Bayreuth

    Wie entdeckten sie 1990 das Bakterium Magnetospirillum gryphiswaldense?
    Aus Schlamm eines kleinen Flusses isolierte ich als Student im Greifswalder Labor von Manfred Köhler dieses unbekannte, damals schwer zu züchtende Bakterium. Als glückliche Fügung erwies sich zeitgleich der Fall der Mauer: Im Münchner Labor von Karl-Heinz Schleifer und Rudolf Amann untersuchten wir mit modernen Methoden das neuentdeckte Bakterium. Es wurde namensgebend für die Gattung Magnetospirillum.

    Was fasziniert Sie an Magnetospirillum?
    Immer noch, Magnetospirillen unter dem Mikroskop magnetisch einheitlich ausgerichtet umherflitzen zu sehen! Faszinierend sind aber vor allem unsere Entdeckungen: So ist der „Magnet“, eine Kette aus Kristallen, komplizierter aufgebaut als vermutet. Unerwartet viele Gene sind an der Synthese und Anordnung der Magnetosomen beteiligt - eine der kompliziertesten Strukturen, die wir aus Bakterien kennen.

    Wieso haben die Bakterien eine schraubenförmige Gestalt?
    Wahrscheinlich können sie sich im Bodensediment von natürlichen Gewässern damit rotierend fortbewegend. Es ist auch erstaunlich, wie sie die Magnetkette in ihrem gewundenen Zellkörper verankern. Erst kürzlich haben wir gelernt, dass sie dafür ein besonderes Zellskelett nutzen.

    Welchen Vorteil hat die Magnetotaxis für (Mikro-)Organismen?
    Die Bakterien leben in tieferen sauerstoffarmen Sedimentschichten. Mit der Ausrichtung am Erdmagnetfeld können sie dem ebenfalls von oben nach unten verlaufenden Sauerstoff-Gefälle besonders leicht folgen. Entlang dieser magnetischen „Schiene“ schwimmend erspüren sie mit Hilfe von Sensorproteinen exakt die Position mit der für sie optimalen, niedrigen Sauerstoffkonzentration.

    Nützen diese Erkenntnisse auch der Erforschung des Magnetsinns von Tieren?
    Zugvögel, Lachse oder Meeresschildkröten orientieren sich ebenfalls im Erdmagnetfeld. Der tierische Magnetfeldsensor ist aber noch unbekannt. Möglicherweise spielen ähnlich wie bei Bakterien winzige Kristalle eines Eisenminerals eine Rolle - neben zusätzlichen, noch unerforschten Mechanismen.

    Können Laien magnetotaktische Bakterien finden?
    Das ist nicht schwer: Im Gartenteich oder flachen Tümpel finden sich viele verschiedene Arten: Stäbchen, Kugeln, Spiralen. Mit einem Phasenkontrastmikroskop, das wenigstens 100fach, besser 400fach vergrößert, betrachtet man den Rand eines Schlammtropfens, an den man einen kleinen Stabmagneten hält. Magnetbakterien schwimmen hartnäckig in eine Richtung und sammeln sich am Tropfenrand des magnetischen Südpols. Dreht man den Magneten um, wenden auch die Bakterien.

    Welche Anwendungen erhoffen Sie sich von Magnetospirillum?
    Wir wollen die biologischen Prozesse verstehen, die zur Bildung der Magnetosomen führen. Deren Materialeigenschaften sind in der DNA-Sequenz der Bakterien verankert. Gentechnisch lassen sich Größe, Form und Magnetisierung ändern. Mit fremden Genen bringen wir die Bakterien dazu, Magnetpartikel mit neuen Eigenschaften zu produzieren: interessante Enzymaktivitäten, Antikörper oder größere geordnete magnetische Strukturen. Dies ist für technische oder biomedizinische Anwendungen von Interesse. Andere Forscher versuchen sogar, lebende Magnetbakterien als Mikroroboter zu verwenden, die sie mit Medikamenten beladen und dann magnetisch gesteuert an den Wirkungsort im Körper, etwa zu Tumoren bringen wollen.

    Die Fragen stellte Anja Störiko (VAAM)


    Bilder

    Magnetospirillum gryphiswaldense in Teilung, mit Magnetit¬kristallen (rot) und dem speziellen Cytoskelett (grün)
    Magnetospirillum gryphiswaldense in Teilung, mit Magnetit¬kristallen (rot) und dem speziellen Cytosk ...
    © M. Toro-Nahulepan/ J. Plitzko - freigegeben zur Verwendung in Zusammenhang mit der redaktionellen Berichterstattung über die „Mikrobe des Jahres 2019“
    None

    Prof. Dr. Dirk Schüler, Universität Bayreuth, Magnetospirillum-Forscher der ersten Stunde
    Prof. Dr. Dirk Schüler, Universität Bayreuth, Magnetospirillum-Forscher der ersten Stunde
    VAAM - freigegeben zur Verwendung in Zusammenhang mit der redaktionellen Berichterstattung über die „Mikrobe des Jahres 2019“
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Wissenschaftler, jedermann
    Biologie, Chemie
    überregional
    Buntes aus der Wissenschaft, Wettbewerbe / Auszeichnungen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).