idw - Informationsdienst
Wissenschaft
Experimentalphysiker konnten erstmals das magnetische Moment von Materialien synchron zu deren elektronischen Eigenschaften direkt beeinflussen. Die gekoppelte optische und magnetische Anregung innerhalb einer Femtosekunde entspricht einer Beschleunigung um den Faktor 200 und ist das schnellste magnetische Phänomen, das bisher beobachtet werden konnte.
Elektronische Eigenschaften von Materialien lassen sich mittels Lichtabsorption direkt und unmittelbar innerhalb von weniger als einer Femtosekunde (10-15 Sekunden) beeinflussen, was als die Grenze für die maximal erreichbare Geschwindigkeit elektronischer Schaltkreise gilt. Das magnetische Moment von Materie hingegen ließ sich bis dato nur über einen Licht und Magnetismus verknüpfenden Prozess und den Umweg über Magnetfelder beeinflussen, weshalb magnetisches Schalten bisher ungleich länger und wenigstens einige hundert Femtosekunden dauert. Ein Konsortium aus Forschenden der Max-Planck-Institute für Quantenoptik und Mikrostrukturphysik, des Max-Born Instituts, der Universität Greifswald und der Technischen Universität Graz konnte nun erstmals die magnetischen Eigenschaften eines ferromagnetischen Materials auf der Zeitskala von elektrischen Feldschwingungen des Lichts – und somit synchron zu den elektrischen Eigenschaften – mittels Laserblitzen manipulieren. Die Beeinflussung konnte um den Faktor 200 beschleunigt werden und wurde mittels Attosekunden-Spektroskopie gemessen sowie zeitaufgelöst dargestellt. In der Zeitschrift Nature beschreiben die Foschenden ihr Experiment.
Zusammensetzung des Materials als entscheidendes Kriterium
Bei der Attosekunden-Spektroskopie werden magnetische Materialien mit ultrakurzen Laserpulsen beleuchtet und elektronisch beeinflusst. „Die Lichtblitze setzen im Material einen intrinsischen und üblicherweise verzögernden Prozess in Gang. Dieser übersetzt die elektronische Anregung in eine Änderung der magnetischen Eigenschaften“, erklärt Martin Schultze, bis vor kurzem am Münchner Max-Planck-Institut für Quantenoptik tätig und nun Universitätsprofessor am Institut für Experimentalphysik der TU Graz. Aufgrund der Kombination eines Ferromagnets mit einem nicht-magnetischen Metall ließ sich die magnetische Reaktion im beschriebenen Experiment jedoch genauso schnell herbeiführen, wie die elektronische. „Durch die spezielle Konstellation konnten wir optisch eine räumliche Umverteilung der Ladungsträger bewirken, die eine direkt damit verknüpfte Änderung der magnetischen Eigenschaften zur Folge hatte“, so Markus Münzenberg. Er hat mit seinem Team in Greifswald die speziellen Materialsysteme entwickelt und hergestellt.
Schultze zeigt sich begeistert von der Dimension des Forschungserfolges: „Noch nie wurde ein so schnelles magnetisches Phänomen beobachtet. Ultrafast Magnetism bekommt dadurch eine völlig neue Bedeutung.“ Auch Sangeeta Sharma, Forscherin am Max-Born-Institut Berlin, die den zugrundeliegenden Prozess mittels Computermodellen vorhergesagt hat, ist beeindruckt: „Wir erwarten uns dadurch einen signifikanten Entwicklungsschub für sämtliche Anwendungen, bei denen Magnetismus und Elektronenspin eine Rolle spielen.“
Erster Schritt in Richtung eines kohärenten Magnetismus
Darüber hinaus konnten die Forschenden im Rahmen ihrer Messungen zeigen, dass der beobachtete Prozess kohärent verläuft, die quantenmechanische Wellennatur der bewegten Ladungsträger also erhalten bleibt. Diese Bedingungen erlauben es Forschenden, anstatt größerer Materieeinheiten einzelne Atome als Informationsträger zu nutzen oder die geänderten magnetischen Eigenschaften mit einem weiteren, zeitverzögerten Laserblitz gezielt zu beeinflussen und so die technologische Miniaturisierung weiter voranzutreiben. „Perspektivisch könnte das im Bereich des Magnetismus zu ähnlich fantastischen Entwicklungen führen, wie elektronische Kohärenzen in Richtung Quantencomputing“, hofft Schultze, der am Institut für Experimentalphysik nun eine Arbeitsgruppe mit Schwerpunkt auf die Attosekundenphysik leitet.
Ausbau der Spitzenforschung an der TU Graz
Gemeinsam mit seinen Grazer Kolleginnen und Kollegen will Schultze das Institut zu einem Zentrum für ultrazeitaufgelöste Spektroskopie elektronischer und magnetischer Phänomene ausbauen. Am Campus Neue Technik der TU Graz wird hierfür gerade ein modernes Laserlabor eingerichtet, das – angelehnt an die schon bestehenden Aktivitäten – die Forschung im Field of Expertise "Advanced Materials Science" an der TU Graz weiter stärkt.
Die Forschung von Martin Schultze ist im Field of Expertise „Advanced Materials Science“ verankert, einem von fünf strategischen Schwerpunktfeldern der TU Graz.
Kontakt:
Univ.-Prof. Martin SCHULTZE
TU Graz | Institut für ExperimentalphysikAttose
Petersgasse 16, 8010 Graz, Österreich
Tel. +43 316 873 8142
schultze@tugraz.at
Dr. Sangeeta SHARMA
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Max-Born Strasse 2A, 12489 Berlin, Deutschland
Tel.: +49 30 6392 1321
sharma@mbi-berlin.de
Univ.-Prof. Markus MÜNZENBERG
Universität Greifswald | Institut für Physik
Felix-Hausdorff-Str. 6, 17489 Greifswald, Deutschland
Telefon: +49 3834 420-4780
markus.muenzenberg@uni-greifswald.de
Univ.-Prof. Martin SCHULTZE
TU Graz | Institut für ExperimentalphysikAttose
Petersgasse 16, 8010 Graz, Österreich
Tel. +43 316 873 8142
schultze@tugraz.at
Die Originalpublikation 'Light-wave dynamic control of magnetism' in Nature ist abrufbar auf https://www.nature.com/articles/s41586-019-1333-x
DOI: 10.1038/s41586-019-1333-x
https://www.tugraz.at/forschung/fields-of-expertise/advanced-materials-science/u... (FoE Advanced Materials Science)
https://www.tugraz.at/institute/iep/home/ (Institut für Experimenatlphysik)
Aufzeichnung des schnellen Schaltens von magnetischen Momenten durch ultraschnelle Lichtimpulse
© J.K. Dewhurst
None
Martin Schultze ist seit 1. März Universitätsprofessor für Experimentalphysik mit Schwerpunkt Optik ...
© TU Graz
None
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Chemie, Physik / Astronomie, Werkstoffwissenschaften
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).