idw - Informationsdienst
Wissenschaft
Wie Wasserstoff produzierende Enzyme, die sogenannten Hydrogenasen, während ihrer Biosynthese aktiviert werden, hat ein Team der Ruhr-Universität Bochum und der University of Oxford herausgefunden. Sie zeigten, wie der Kofaktor – ein Teil des aktiven Zentrums und zugleich das Herzstück des Enzyms – ins Innere eingeschleust wird.
Hydrogenasen sind biotechnologisch interessant, da sie effizient Wasserstoff herstellen können. „Um sie für eine industrielle Anwendung zu optimieren, müssen wir aber zunächst den Prozess verstehen, wie die Proteinhülle den chemischen Kofaktor aufnimmt und aktiviert“, sagt Prof. Dr. Thomas Happe. Die Ergebnisse veröffentlichte ein Team um Oliver Lampret und Thomas Happe von der Bochumer Arbeitsgruppe Photobiotechnologie in der Zeitschrift „Proceedings of the National Academy of Sciences“, kurz PNAS, am 23. Juli 2019.
Die Wissenschaftlerinnen und Wissenschaftler untersuchten die Untergruppe der sogenannten [FeFe]-Hydrogenasen, die die effizientesten Wasserstoffproduzenten sind. In der Natur kommen sie in Grünalgen vor. In ihrem Proteingerüst besitzen die Enzyme ein aktives Zentrum, das sogenannte H-Cluster, an dem der Wasserstoff entsteht. Es besteht aus zwei Strukturelementen: einem Cluster aus vier Eisen- und vier Schwefelatomen und dem katalytischen Kofaktor, bestehend aus zwei Eisen- und zwei Schwefelatomen. „Dieser Kofaktor ist der Dreh- und Angelpunkt des Enzyms“, erklärt Oliver Lampret.
Letzter Schritt der Biosynthese
In der Natur wird der Kofaktor nachträglich, also nach der Biosynthese des Proteingerüsts in das Enzym eingebaut – ein hochkomplexer Vorgang. Erst danach ist die Hydrogenase katalytisch aktiv. Die genaue Abfolge des Prozesses klärten die Forscher mit Protein Engineering, Proteinfilmelektrochemie und Infrarotspektroskopie auf.
Das Team zeigte, dass der negativ geladene Kofaktor gezielt durch einen positiv geladenen Reifungskanal in das Innere des Enzyms befördert wird, bevor er in der Proteinhülle fest verankert wird. Besonders flexible Strukturelemente dienen dabei als Scharniere: Sie sorgen dafür, dass sich das Protein anders faltet und den integrierten Kofaktor fest umschließt und schützt. Das Zusammenspiel von Proteinumgebung und Kofaktor ist wesentlich, um den Kofaktor in seiner katalytischen Form zu stabilisieren.
„Wir vermuten, dass nicht nur [FeFe]-Hydrogenasen auf diese Weise ihren Kofaktor erhalten, sondern dass der Mechanismus auch in anderen metallhaltigen Enzymen vorkommt“, resümiert Happe.
Förderung
Die Arbeiten wurden unterstützt von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC 2033, Projektnummer 390677874) und des Graduiertenkollegs GRK 2341 “Microbial Substrate Conversion“ sowie von der Volkswagen-Stiftung (Az 93412).
Prof. Dr. Thomas Happe
Arbeitsgruppe Photobiotechnologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 27026
E-Mail: thomas.happe@rub.de
Oliver Lampret et al.: The final steps of [FeFe]-hydrogenase maturation, in: Proceedings of the National Academy of Sciences, 2019, DOI: 10.1073/pnas.1908121116
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Chemie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).