idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.12.2019 13:44

Metall-Isolator-Materialien verstehen: Die Wirkung des heißen Elektrons

Birte Vierjahn Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

    Sehen kann man sie nicht wirklich, aber dennoch lässt sich der Energiefluss wie in einem Daumenkino verfolgen: Physiker der Universität Duisburg-Essen (UDE) haben die Energieübertragung in einem Metall-Isolator-Material untersucht und ihre Ergebnisse im Fachmagazin „Physical Review B“ veröffentlicht. Langfristig könnten sie dazu beitragen, das Wärmeproblem in der Mikroelektronik durch gezieltes Materialdesign zu lösen.

    Laptops und Server – sie wären zum Hitzetod verurteilt, gäbe es nicht energiefressende und voluminöse Technik, um die empfindlichen Schaltungen zu kühlen. Ungewollte, bisher aber nicht vermeidbare Abwärme ist ein teures Problem. Verfolgt man ihre Ursache bis auf die atomare Ebene zurück, so landet man beim Elektron, das sich seinen Weg durch verschiedene Materialien bahnt. Aber wie genau?

    Das haben UDE-Physiker vom Sonderforschungsbereich „Nichtgleichgewichtsdynamik kondensierter Materie in der Zeitdomäne“ untersucht. Dazu haben sie ein Material, das im Wechsel aus dünnen Schichten Metall (Eisen) und Isolator (Magnesiumoxid) besteht, mit einem Anrege-Abfrage-Verfahren untersucht: Ein Laserpuls bringt Energie in das System ein, kurze Zeit später liest ein Röntgenstrahl in einer Momentaufnahme aus, wie sie sich in Form „heißer Elektronen“ im Material ausbreitet. „Wenn wir den zeitlichen Abstand beider Pulse gleichmäßig vergrößern, dann können wir den Prozess wie in einem Film verfolgen“, erklärt Experimentalphysikerin Dr. Andrea Eschenlohr.

    Reaktion in einer billionstel Sekunde

    Das Ergebnis: In weniger als einer Pikosekunde (0,000 000 000 001 s) regen die heißen Elektronen das Metallgitter an; fast gleichzeitig beginnt die Grenzfläche zwischen den Materialien zu schwingen. Eine weitere Pikosekunde später reagiert auch der Isolator. „Letzteres hat uns überrascht“, so Eschenlohr. „Wir hätten nicht erwartet, dass diese Grenzflächenschwingungen so wichtig sind.“ Theoretische Simulationen bestätigten die Ergebnisse im Detail.

    Im nächsten Schritt wollen die Physiker nun komplexere Systeme untersuchen und die Ergebnisse möglichst verallgemeinern. „Auf lange Sicht ließe sich so vielleicht ein genau abgestimmter Materialmix für verschiedene Aufgaben maßschneidern und das Problem mit der Abwärme lösen.“

    Die Veröffentlichung entstand als Kooperation der Arbeitsgruppen von Prof. Dr. Uwe Bovensiepen, Prof. Dr. Rossitza Pentcheva und Prof. Dr. Heiko Wende.

    Redaktion: Birte Vierjahn, Tel. 0203 37 9-8176, birte.vierjahn@uni-due.de


    Wissenschaftliche Ansprechpartner:

    Dr. Andrea Eschenlohr, Tel. 0203 37 9-4531, andrea.eschenlohr@uni-due.de


    Originalpublikation:

    N. Rothenbach, M. E. Gruner, K. Ollefs, C. Schmitz-Antoniak, S. Salamon, P. Zhou, R. Li, M. Mo, S. Park, X. Shen, S. Weathersby, J. Yang, X. J. Wang, R. Pentcheva, H. Wende, U. Bovensiepen, K. Sokolowski-Tinten, and A. Eschenlohr
    Microscopic nonequilibrium energy transfer dynamics in a photoexcited metal/insulator heterostructure
    Phys. Rev. B 100, 174301 (2019)
    DOI: 10.1103/PhysRevB.100.174301


    Bilder

    Elektronenbeugungsmuster der Probe (Farben nachträglich hinzugefügt).
    Elektronenbeugungsmuster der Probe (Farben nachträglich hinzugefügt).
    N. Rothenbach et al., Phys. Rev. B 100 (2019)
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Elektrotechnik, Energie, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).