idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.01.2020 15:19

Quantenphysik - Auf dem Weg zum Quantennetzwerk

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    Physikern der LMU ist es in Zusammenarbeit mit Forschern der Universität des Saarlandes gelungen, eine Verschränkung zwischen den Quanteneigenschaften eines Atoms und eines Photons über 20 Kilometer Glasfaser zu erzeugen – ein neuer Rekord.

    Albert Einstein sprach einst von „spukhafter Fernwirkung“, als er versuchte, ein für Laien schwer nachvollziehbares Phänomen aus der Quantenwelt zu beschreiben. Er bezog sich auf die sogenannte Verschränkung, einen quantenmechanischen Zustand, der auf zwei verschiedene Teilchen verteilt ist und diese gewissermaßen verbindet – mittlerweile über große Distanzen. Das Prinzip der Verschränkung ist zentral für alle künftigen Quantentechnologien. Forschern der LMU um den Physiker Harald Weinfurter ist es in Zusammenarbeit mit Kollegen der Universität des Saarlands nun gelungen, eine Verschränkung zwischen den Quanteneigenschaften eines Atoms und eines Photons über 20 Kilometer Glasfaser zu erzeugen. Bisherige Experimente erreichten lediglich Entfernungen von 700 Metern. „Die Entfernung stellt einen Meilenstein hinsichtlich der Verteilung von Quanteninformationen in großem Maßstab dar“, sagt Weinfurter. „Unsere Arbeit ist ein zentraler Schritt hin zu zukünftigen Quantennetzwerken.“

    Quantennetzwerke bestehen grundsätzlich aus Knotenpunkten mit Quantenspeichern – zum Beispiel ein oder mehrere Atome – und photonischen Kanälen dazwischen, also einer Verbindung über Lichtteilchen. Den Physikern gelang es nun, ein Rubidium-Atom mit einem Photon zu verschränken und die Verschränkung auch noch nach einer im Labor aufgewickelten, zwanzig Kilometer langen Glasfaserleitung zu beobachten.

    Das größte Hindernis für derart große Distanzen war dabei die Wellenlänge der im Experiment verwendeten Rubidium-Atome. Sie emittieren nach gezielter Anregung Photonen mit einer Wellenlänge von 780 Nanometern, also nahem Infrarot. „Diese Wellenlänge würde in einer Glasfaser schnell absorbiert“, erklärt Weinfurter. In den Leitungen wird das Signal nämlich je nach genutzter Wellenlänge unterschiedlich stark absorbiert. Konventionelle Kommunikationsnetze wie etwa das der Telekom verwenden daher Wellenlängen um 1550 Nanometern, die Verluste in den Glasfaserkabeln sind hier deutlich geringer.

    Dies wollten die Forscher nutzen. Daher baute Matthias Bock von der Universität des Saarlandes einen sogenannten Frequenzkonverter, der die Wellenlänge des Photons gezielt auf 1520 Nanometer umwandeln kann – ein technisch extrem aufwändiger und anspruchsvoller Vorgang. Denn bei der Umwandlung dürfen wichtige Eigenschaften wie vor allem die Polarisation des Photons nicht verändert werden, sonst ginge die Verschränkung verloren. „Dank dieses sehr effizienten Konverters konnten wir bei Telekom-Wellenlängen deutlich höhere Reichweiten erzielen und Quanteninformationen über große Entfernungen übertragen“, sagt Weinfurter.

    In einem nächsten Schritt wollen die Forscher nun auch für ein zweites Atom die Wellenlänge konvertieren, um die zwei Atome auch über lange Glasfaserspulen miteinander verschränken zu können. Die Eigenschaften von Glasfasern ändern sich abhängig von Temperatur und Spannung auf der Faser. Daher wollen die Forscher die Verschränkung über 20 Kilometer zuerst unter kontrollierten Laborbedingungen erzeugen. Danach sind Experimente im Freiland geplant, um so das Netzwerk mit neuen Knotenpunkten weiter zu bauen. Ein langer Weg also, auf dem die Quantenforscher Schritt für Schritt vorankommen.


    Wissenschaftliche Ansprechpartner:

    Prof. Harald Weinfurter
    Fakultät für Physik
    Tel: +49 (0)89 2180-2044
    Email: h.w.@lmu.de

    Prof. Christoph Becher
    Universität des Saarlandes
    Tel. +49 (0)681 302 2466
    christoph.becher@physik.uni-saarland.de


    Originalpublikation:

    Long-Distance Distribution of Atom-Photon Entanglement at Telecom Wavelength
    Tim van Leent, Matthias Bock, Robert Garthoff, Kai Redeker, Wei Zhang, Tobias Bauer, Wenjamin Rosenfeld, Christoph Becher und Harald Weinfurter
    Physical Review Letters, Bd. 124, 2020

    https://doi.org/10.1103/PhysRevLett.124.010510


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).