idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
10.02.2020 12:41

Sinneswahrnehmungen sind keine oberflächliche Hirnarbeit

Bettina Hennebach Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kognitions- und Neurowissenschaften

    Wie entscheidet das Gehirn beim Zusammenspiel der Sinne, auf welchen es die übergreifende Aufmerksamkeit lenkt? Forscher des Max-Planck-Instituts für Kognitions- und Neurowissenschaften in Leipzig und des Computational Neuroscience and Cognitive Robotics Centre der University of Birmingham machen erstmals sichtbar, wie Sinnesreize tief im Gehirn verarbeitet werden.

    Schauen wir beim Überqueren der Straße aufs Smartphone, lässt uns ein warnendes Hupen oder Motorengeräusch aufschrecken. Im Alltag können wir mühelos Informationen von verschiedenen Sinnen zusammenführen und unsere Aufmerksamkeit von einem Sinneseingang auf einen anderen verlagern – etwa vom Sehen auf das Hören. Doch wie entscheidet das Gehirn beim Zusammenspiel beider Sinne, auf welchen es die übergreifende Aufmerksamkeit lenkt? Und wie spiegeln sich diese Mechanismen in der Hirnstruktur wider?

    Signale aus der Tiefe

    Um das zu beantworten, haben Wissenschaftler des Max-Planck-Instituts für Kognitions- und Neurowissenschaften (MPI CBS) in Leipzig und des Computational Neuroscience and Cognitive Robotics Centre der University of Birmingham beobachtet, wie Sinnesreize im Gehirn verarbeitet werden. Im Gegensatz zu bisherigen Studien haben sie dabei nicht nur beobachtet, an welchen Stellen die Großhirnrinde, auch Kortex genannt, auf der Oberfläche aktiviert wird. Sie haben erstmals auch nach stärkeren Signalen in der Tiefe, entlang ihres Querschnitts gesucht. Die Ergebnisse der Forscher deuten darauf hin, dass unser Gehirn den „übersinnlichen“ Informationsfluss über ausgeprägte Schaltkreise bis in die kleinsten Windungen dieser stark gefalteten Hirnstruktur leitet.

    Während die Teilnehmer ihrer Studie im Magnetresonanztomographen (MRT) lagen, zeigten die Wissenschaftler ihnen grafische Symbole auf einem Bildschirm, gleichzeitig spielten sie ihnen Geräusche vor. Davor waren die Studienteilnehmer gebeten worden, ihre Aufmerksamkeit entweder auf den hörbaren oder den sichtbaren Teil des Experiments zu richten. Die Neurophysiker um Robert Turner, Robert Trampel und Rémi Gau analysierten im Anschluss daran, an welchen exakten Stellen die Sinnesreize verarbeitet werden – und mussten dabei mit zwei Schwierigkeiten umgehen. „Die Hirnrinde ist nur zwei bis drei Millimeter dick. Wir benötigten also eine sehr hohe räumliche Auflösung von unter einem Millimeter während der Datenaufnahme.“, erklärt Robert Trampel, der die Studie am MPI CBS mitbetreut hat. „Durch die dichte Faltung der Hirnrinde mussten wir sie außerdem virtuell glätten und in verschiedene Schichten zerlegen, um die Signale genau orten zu können. Das passierte am Computer.“

    Hören lenkt vom Sehen ab

    Faszinierend hierbei: Hörten die Teilnehmer ein Geräusch, schaltete sich bei ihnen der visuelle Teil des Gehirns weitgehend ab – unabhängig davon, ob sie ihre Aufmerksamkeit auf den hörbaren oder den sichtbaren Teil des Experiments richteten. Achteten sie hingegen verstärkt auf das Geräusch, verringerte sich vor allem in den Regionen die Hirnaktivität, die dem Zentrum des Gesichtsfeldes entsprechen. Geräusche lenken unsere Aufmerksamkeit also stark von dem ab, was wir gerade betrachten.

    In den Regionen, die fürs Hören zuständig sind, beobachteten die Forscher zudem zum ersten Mal, dass sich das Aktivierungsprofil entlang der verschiedenen Schichten des Kortex veränderte, wenn den Teilnehmern ausschließlich Geräusche präsentiert wurden. Anders hingegen, wenn die Studienteilnehmer nur „etwas fürs Auge“ wahrnahmen: Dann gab es keine Veränderungen. Rémi Gau resümiert: „Wenn wir also gleichzeitig verschiedene Sinneseindrücke verarbeiten müssen, werden auch verschiedene Verschaltungen von Neuronen aktiv – je nachdem, worauf wir unsere Aufmerksamkeit richten. Das konnten wir nun durch neuartige Experimente am Computer sichtbar machen.“


    Wissenschaftliche Ansprechpartner:

    Dr. Robert Trampel
    Abteilung Neurophysik am MPI CBS
    +49 341 9940-2293
    trampel@cbs.mpg.de


    Originalpublikation:

    Remi Gau, Pierre-Louis Bazin, Robert Trampel, Robert Turner, Uta Noppeney:
    "Resolving multisensory and attentional influences across cortical depth in sensory cortices" in eLife (2020)


    Weitere Informationen:

    https://elifesciences.org/articles/46856
    http://Hirn-Animation: https://www.mpg.de/14442678/0207-nepf-132884-sinneswahrnehmung-keine-oberflaechl...


    Bilder

    Geräusche lenken unsere Aufmerksamkeit also stark von dem ab, was wir gerade betrachten.
    Geräusche lenken unsere Aufmerksamkeit also stark von dem ab, was wir gerade betrachten.
    MPI CBS
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).