idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.04.2020 07:57

Serendipity in the research field of magnetism

Linda Behringer Public Relations
Max-Planck-Institut für Intelligente Systeme

    Scientists discover new light-matter interaction with which they can write nanometer-sized magnetic structures

    A German-Chinese research team has discovered a new effect that for the first time enables the creation of extremely small magnetic structures, known as skyrmions, directly with an X-ray beam. The scientists have thus made it possible to write arbitrary magnetic patterns with the highest precision.

    Stuttgart – In cooperation with Chinese researchers from the Chinese Academy of Sciences and others, German researchers from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart have for the first time ever created individual skyrmions in a magnetic layer using soft X-rays. In numerous experiments, they have shown that a focused soft X-ray beam with a diameter of less than 50 nanometres can generate a vortex-like magnetic skyrmion of 100 nanometres – the smallest possible size. In so doing, the scientists are the first to discover that this interaction between light and matter exists. Their research paper "Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination" was published in the renowned scientific journal Nature Communications in February. The project is a joint research effort between MPI-IS, the Chinese Academy of Sciences, the Songshan Lake Materials Laboratory in Guangdong, and Lanzhou University.

    "We do not yet know how x-ray light writes magnetic structures in matter," says Dr. Joachim Gräfe, head of the Nanomagnonics and Magnetization Dynamics research group at the MPI-IS and one of the study’s lead authors. "Since heat is not a factor in writing the skyrmions, here, it has to do with the X-ray beam itself and it's a resonant element-specific effect: we can write the atoms responsible for the magnetism directly." He and his team were thus able to write "MPI-IS", as shown in a picture (see attached image).

    Skyrmions are three-dimensional structures that are 100 nanometres in size and occur in magnetic materials. They resemble small coils: elementary magnets known as spins that are arranged in closed vortex-like structures. Skyrmions are topologically protected, meaning that their shape is unchangeable. They are thus regarded as stable data storage devices.

    Discovering a completely new effect is a stroke of luck that scientists experience only a few times over the course of their careers, if at all. "This is one of the most exciting skyrmion projects we have conducted in recent years," Gräfe continues. "Discovering this new effect was completely unexpected and surprising for us." Thanks to this discovery, practically anyone can now write various skyrmion arrangements in magnetic layers with an X-ray beam. This will open up several completely new fields of research. The ability to write magnetic structures with pinpoint accuracy opens up many possibilities.

    The results are particularly relevant for the development and production of skyrmion processors, which store information in skyrmions and move them for processing. These processors are considered very energy-efficient and less susceptible to interference. However, this development can only take its course if skyrmions can be created precisely and accurately – and this is now possible for the first time. "Our goal is that X-rays will one day serve as a tool for determining or writing the arrangement of magnetic structures."

    To make skyrmions visible, the researchers use a scanning transmission X-ray microscope: MAXYMUS is a high-resolution X-ray microscope weighing 1.8 tons. It is located at BESSY II, an 80-metre-wide synchrotron radiation source of the Helmholtz-Zentrum Berlin in Adlershof. MAXYMUS stands for "MAgnetic X-raY Micro- and UHV Spectroscope". The microscope is like a camera: much like in a slow-motion film, it follows how the structure in materials changes to the size of only a few nanometres. The scanning X-ray microscope’s wide range of applications is what attracts many of the world's leading researchers. There are far more applications for MAXYMUS than its capacity allows. “This shows how attractive working with the microscope is,” says Gräfe. “It is also great that MAXYMUS attracts many international cooperations and makes diverse joint projects possible.”


    Figure: A bundled soft X-ray beam with a diameter of less than 50 nanometers writes numerous magnetic vortices, which together form the term "MPI-IS". Picture credits: Alejandro Posada and Felix Groß

    Press Contact:
    Linda Behringer
    Max Planck Institut for Intelligent Systems, Stuttgart,
    T: +49 711 689 3552
    M: +49 151 2300 1111
    linda.behringer@is.mpg.de


    Wissenschaftliche Ansprechpartner:

    Dr. Joachim Gräfe
    Research Group Leader
    Department Modern Magnetic Systems
    +49 711 689-1852
    graefe@is.mpg.de


    Originalpublikation:

    https://www.nature.com/articles/s41467-020-14769-0?utm_source=other&utm_medi...


    Bilder

    A bundled soft X-ray beam with a diameter of less than 50 nanometers writes numerous magnetic vortices, which together form the term "MPI-IS"
    A bundled soft X-ray beam with a diameter of less than 50 nanometers writes numerous magnetic vortic ...
    Alejandro Posada und Felix Groß
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).