idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.07.2020 09:20

Neue Chemie für ultradünne Gassensoren

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Die Anwendung von Zinkoxidschichten in der Industrie ist vielfältig und erstreckt sich vom Schutz verderblicher Waren vor Luft bis zur Detektion von giftigen Stickoxiden. Solche Schichten können mit Hilfe der Atomlagenabscheidung (engl. Atomic layer deposition, kurz ALD) hergestellt werden, die normalerweise Vorläuferchemikalien, sogenannte Präkursoren, einsetzt, die sich an der Luft sofort entzünden. Ein interdisziplinäres Forschungsteam der Ruhr-Universität Bochum (RUB) hat jetzt einen neuen Herstellungsprozess etabliert, der auf nicht selbstentzündlichen Präkursoren basiert und bei so niedrigen Temperaturen abläuft, dass auch Kunststoffe beschichtet werden können.

    Das Team berichtet in der Zeitschrift „Small“, die den Beitrag in der Ausgabe vom 4. Juni 2020 für ihren Titel ausgewählt hat.

    Ultradünne Schichten aufbringen

    Um einen Sensor für Stickstoffdioxid (NO2) herzustellen, muss eine dünne Schicht nanostrukturiertes Zinkoxid (ZnO) auf ein Sensorsubstrat aufgebracht und anschließend in ein elektrisches Bauteil eingebunden werden. Das Team von Prof. Dr. Anjana Devi nutzte ALD, um ultradünne ZnO-Schichten auf solche Sensorsubstrate aufzubringen.

    Generell werden in der Industrie ALD-Prozesse eingesetzt, um mittels ultradünner Schichten, die teilweise nur wenige Atomlagen dick sind, elektrische Bauteile zu miniaturisieren und gleichzeitig die Effektivität zu erhöhen. Dafür sind Präkursoren notwendig, die im ALD-Prozess auf einer Oberfläche reagieren und so eine dünne Schicht bilden. „Die Chemie hinter ALD-Prozessen ist also essenziell und hat großen Einfluss auf die resultierenden Schichten“, unterstreicht Anjana Devi.

    Sichere Handhabung und höchste Qualität

    In der Industrie werden ZnO-Schichten bisher mit einem extrem reaktiven Zinkpräkursor hergestellt, der sich an Luft sofort entzündet, Experten nennen das pyrophor. „Der Schlüssel für die Entwicklung eines sicheren ALD-Prozesses war die Erforschung eines neuen, nicht pyrophoren Präkursors, der sicher gehandhabt werden kann und in der Lage ist ZnO-Schichten in der höchsten Qualität herzustellen“, so Lukas Mai, Erstautor der Studie. „Die Herausforderung war es, eine alternative Chemie zu finden, die in der Lage ist, pyrophore, industriell verwendete Verbindungen zu ersetzen.“

    Das Besondere am neuen Prozess ist, dass dieser sogar bei geringen Temperaturen möglich ist, was das Beschichten von Kunststoffen ermöglicht. Somit ist der neue Prozess nicht nur für die Herstellung von Gassensoren geeignet, sondern auch für Gasbarriereschichten. Sie werden in der Industrie auf Plastik aufgebracht und dafür genutzt, empfindliche Waren wie Lebensmittel und Medikamente vor Luft zu schützen.

    Kooperationspartner

    Möglich wurde dies durch die interdisziplinäre Zusammenarbeit von Naturwissenschaftlern und Ingenieuren. Zum Team gehörten die Arbeitsgruppen Chemie Anorganischer Materialien unter der Leitung von Anjana Devi sowie Allgemeine Elektrotechnik und Plasmatechnik unter Leitung von Prof. Dr. Peter Awakowicz, Forscherinnen und Forscher der Heinrich-Heine-Universität Düsseldorf und die Firma Paragon.

    Förderung

    Die Arbeiten wurden durch den Europäischen Fond für Regionale Entwicklung (EFRE) im Projekt Funald und durch die Deutsche Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs/Transregios TR87 gefördert. Lukas Mai wurde gefördert durch die Stiftung der Deutschen Wirtschaft.

    Originalveröffentlichung

    Lukas Mai et al.: Zinc Oxide: From precursor chemistry to gas sensors: Plasma‐enhanced atomic layer deposition process engineering for zinc oxide layers from a nonpyrophoric zinc precursor for gas barrier and sensor applications, in: Small, 2020, DOI: 10.1002/smll.202070122

    Pressekontakt

    Prof. Dr. Anjana Devi

    Arbeitsgruppe Chemie Anorganischer Materialien


    Lehrstuhl für Anorganische Chemie II

    Fakultät für Chemie und Biochemie


    Ruhr-Universität Bochum


    Tel.: +49 234 32 24167 


    E-Mail: anjana.devi@rub.de


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Anjana Devi

    Arbeitsgruppe Chemie Anorganischer Materialien


    Lehrstuhl für Anorganische Chemie II

    Fakultät für Chemie und Biochemie


    Ruhr-Universität Bochum


    Tel.: +49 234 32 24167 


    E-Mail: anjana.devi@rub.de


    Originalpublikation:

    Lukas Mai et al.: Zinc Oxide: From precursor chemistry to gas sensors: Plasma‐enhanced atomic layer deposition process engineering for zinc oxide layers from a nonpyrophoric zinc precursor for gas barrier and sensor applications, in: Small, 2020, DOI: 10.1002/smll.202070122


    Weitere Informationen:

    https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202070122 - Originalpaper


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).