idw - Informationsdienst
Wissenschaft
Proteine geben innerhalb des menschlichen Körpers Informationen und Signale, indem sie ihre Strukturen verändern: So binden zum Beispiel Hormone an für sie vorgesehene Zielproteine, wodurch sie dort eine Strukturveränderung hervorrufen, die wiederum an anderer Stelle auf der Oberfläche des Proteins neue Bindestellen für andere Proteine bildet. Diese Kopplung von unterschiedlichen, voneinander entfernten Bindestellen bezeichnen Forschende als Allosterie. Eine Unterbrechung dieser Kopplung führt dazu, dass Signale nicht weitergeleitet werden.
Das kann durch gezielt dafür designte Moleküle erreicht werden, die dadurch pharmakologische Wirkung als Schmerzmittel oder Chemotherapeutikum erhalten. Um solche Moleküle zu bauen, müssen Wissenschaftlerinnen und Wissenschaftler die möglichen Mechanismen von Allosterie kennen. Ein Team um Prof. Dr. Gerhard Stock aus der Arbeitsgruppe Biomolekulare Dynamik am Physikalischen Institut der Universität Freiburg und Prof. Dr. Peter Hamm vom Institut für Chemie der Universität Zürich/Schweiz liefern in der Fachzeitschrift PNAS dafür wichtige Einblicke.
Die Forschenden haben zeitaufgelöst allosterische Veränderungen im Testprotein PDZ2 verfolgt, die durch die Bindung eines so genannten Liganden hervorgerufen werden – also eines Stoffes, der in der Lage ist, an ein Zielprotein anzudocken. Die Arbeitsgruppe der Universität Zürich führte hierzu zeitaufgelöste Vibrationsspektroskopie durch, die Physikerinnen und Physiker der Albert-Ludwigs-Universität simulierten am Tübinger Großrechner BinAC die entsprechenden Veränderungen auf atomistischer Ebene. Durch diese Kombination konnten die Wissenschaftler mit atomarer Auflösung und einem Zeitskalenbereich von Pico- bis Mikrosekunden nachvollziehen, wie eine Veränderung des Ligandenbindungsmodus durch das Protein läuft. Diese Echtzeitbeobachtung der Signalübertragung in Proteinen zeigte: Grundlage der Allosterie sind die Veränderungen sowohl der Struktur als auch der Dynamik des Proteins, die über hierarchische Zeitskalen verläuft. Deshalb braucht eine strukturelle Veränderung in etwa zehnmal länger als eine ihr vorangehende Veränderung.
Originalpublikation:
Bozovic, O., Zanobini, C., Gulzar, A., Jankovic, B., Buhrke, D., Post, M., Wolf, S., Stock, G., Hamm, P. (2020): Real-time observation of ligand-induced allosteric transitions in a PDZ domain. In: PNAS. DOI: 10.1073/pnas.2012999117
Kontakt:
Prof. Dr. Gerhard Stock
Physikalisches Institut
Fakultät für Mathematik und Physik
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5750
gerhard.stock@physik.uni-freiburg.de
https://www.pnas.org/content/early/2020/10/02/2012999117
Informationen der Proteine: Eine Unterbrechung in diese Kopplung, der Allosterie, führt dazu, dass S ...
Abbildung: Gerhard Stock, Steff
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Medizin, Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).