idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
05.11.2020 13:31

Datenschutzfreundliche Big-Data-Analysen

MA Oliver Küch Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Sichere Informationstechnologie SIT

    Die Analyse großer Datenmengen ermöglicht viele Verbesserungen. Gleichzeitig entstehen durch Big-Data-Analysemöglichkeiten neue Risiken für die Privatsphäre. Fügt man beim Analysieren Datenmengen aus unterschiedlichen Quellen zusammen, kann man oft vermeintlich anonymisierte Daten zu persönlichen Profilen zusammenführen, mit teils unabsehbaren Folgen für die Betroffenen. Eine neue Studie des Fraunhofer-Instituts für Sichere Informationstechnologie zeigt deshalb, wie Big-Data-Technologien genutzt werden können, ohne der Privatsphäre zu schaden. Die Studie richtet sich an Anwender und Entwickler von Big-Data-Systemen und kann hier heruntergeladen werden: https://www.sit.fraunhofer.de/reports/

    Das Unternehmen New York City Taxi veröffentlichte im März 2014 die Reiseprotokolle von 173 Millionen Taxifahrten, um diesen Datensatz der Forschung zur Verfügung zu stellen. Die Protokolle enthielten Start- und Zielort, Datum und Uhrzeit der Fahrt, Trinkgeld sowie anonymisierte Hinweise auf die Identitäten der Fahrer. New York City Taxi nutzte die Lizenz-Nummern der Fahrer, um daraus einen anonymisierten Wert zu erstellen. Forscher, die mit dem Datensatz arbeiteten, gelang es jedoch, diese Nummern zu de-anonymisieren – indem sie allgemein zugängliches Wissen darüber, wie New Yorker Taxi-Lizenznummern aufgebaut sind, verwendeten. Über die de-anonymisierte Lizenznummer konnten sie herausfinden, wie viel jeder Fahrer an Trinkgeld verdient hatte und ähnliche private Informationen.

    Big Data nutzen, ohne Privacy zu schaden

    Dies ist nur eines von vielen Beispielen dafür, wie verschiedenste Datenquellen zusammengeführt und durch Big-Data-Analysen auch vermeintlich anonyme Daten de-anonymisiert werden können. „Um solche Privacy-Risiken auszuschließen, müssen Big-Data-Systeme angepasst werden“, erklärt Prof. Martin Steinebach, einer der Autoren der Studie und Leiter der Abteilung IT-Forensik am Fraunhofer SIT. „In unserer Studie haben wir praktisch umsetzbare Lösungsvorschläge für Anwender und Entwicklerinnen von Big-Data-Systemen aufgezeigt und Empfehlungen für den datenschutzkonformen Einsatz der Technologie gegeben, etwa dazu, wie Daten am sinnvollsten anonymisiert werden können.“

    Privacy by Design für Big Data

    Grundvoraussetzung für die rechtskonforme Verwendung von personenbezogenen Daten in Big-Data-Analysen ist, dass rechtliche Vorgaben eingehalten werden. Die Studie erläutert deshalb zunächst, was genau die Datenschutz-Grundverordnung (DSGVO) und andere datenschutzrechtliche Vorgaben für den Einsatz von Big-Data-Technologien bedeuten. Die Autoren der Studie empfehlen, auf den Grundprinzipien des Privacy by Design aufzubauen, also Datenschutz schon bei der Konzeption und Entwicklung eines Systems mitzudenken. „Die große Herausforderung besteht darin, ein System zu entwickeln, das datenschutzfreundlich und dennoch technisch machbar ist“ resümieren die Autoren. In der Studie erläutern sie, wie das praktisch umsetzbar sein könnte, und zeigen dies anhand von unterschiedlichen Gestaltungsprinzipien, beispielsweise der Analyse von anonymisierten Daten, um an wertvolle Erkenntnisse zu gelangen, ohne personenbezogene Daten zu benötigen.

    Verschlüsselung und Anonymisierung für Big-Data-Systeme

    Der umfangreichste Teil der Studie gibt einen Überblick über konkrete technische Ansätze, mit denen Daten geschützt werden können. Die Autoren evaluieren die wichtigsten Verschlüsselungstechnologien und empfehlen, welche Ansätze für Big Data am besten geeignet sind. Dabei folgen die Autoren den Verarbeitungsschritten von Daten in Big-Data-Systemen, nämlich sichere Übertragungskanäle („Data in Transit“), sichere Speicherung von Daten („Data at Rest“) sowie sichere Verarbeitung von Daten („Data in Use“). Um Daten durch Big Data gar nicht erst personenbeziehbar zu machen, nennt die Studie verschiedene Verfahren der Anonymisierung für die unterschiedlichsten Arten von Daten, sowohl strukturierte aus Datenbanken als auch unstrukturierte, beispielsweise aus Texten.


    Die Studie „Privacy und Big Data“ ist im Verbundprojekt „Cybersicherheit für die digitale Verwaltung“ am Fraunhofer SIT entstanden, im Rahmen des Nationalen Forschungszentrums für Angewandte Cybersicherheit ATHENE. Finanziert wurde die Studie vom Hessischen Ministerium des Inneren und für Sport HMdIS. Sie kann kostenlos hier heruntergeladen werden: https://www.sit.fraunhofer.de/reports/


    Wissenschaftliche Ansprechpartner:

    Martin Steinebach


    Bilder

    Fügt man Datenmengen aus unterschiedlichen Quellen zusammen, kann man oft vermeintlich anonymisierte Daten zu persönlichen Profilen zusammenführen, mit unabsehbaren Folgen für Betroffene. Die Studie zeigt, wie man Big Data datenschutzfreundlich nutzt.
    Fügt man Datenmengen aus unterschiedlichen Quellen zusammen, kann man oft vermeintlich anonymisierte ...

    Fraunhofer SIT


    Anhang
    attachment icon Studie: Privacy und Big Data

    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter
    Informationstechnik
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).