idw - Informationsdienst
Wissenschaft
The magic of mathematics is particularly reflected in magic squares. Recently, quantum physicist Gemma De las Cuevas and mathematicians Tim Netzer and Tom Drescher introduced the notion of the quantum magic square, and for the first time studied in detail the properties of this quantum version of magic squares.
Magic squares belong to the imagination of humanity for a long time. The oldest known magic square comes from China and is over 2000 years old. One of the most famous magic squares can be found in Albrecht Dürer's copper engraving Melencolia I. Another one is on the facade of the Sagrada Família in Barcelona. A magic square is a square of numbers such that every column and every row sums to the same number. For example, in the magic square of the Sagrada Família every row and column sums to 33.
If the magic square can contain real numbers, and every row and column sums to 1, then it is called a doubly stochastic matrix. One particular example would be a matrix that has 0’s everywhere except for one 1 in every column and every row. This is called a permutation matrix. A famous theorem says that every doubly stochastic matrix can be obtained as a convex combination of permutation matrices. In words, this means that permutation matrices “contain all the secrets” of doubly stochastic matrices—more precisely, that the latter can be fully characterised in terms of the former.
In a new paper in the Journal of Mathematical Physics, Tim Netzer and Tom Drescher from the Department of Mathematics and Gemma De las Cuevas from the Department of Theoretical Physics have introduced the notion of the quantum magic square, which is a magic square but instead of numbers one puts in matrices. This is a non-commutative, and thus quantum, generalisation of a magic square. The authors show that quantum magic squares cannot be as easily characterised as their “classical” cousins. More precisely, quantum magic squares are not convex combinations of quantum permutation matrices. “They are richer and more complicated to understand”, explains Tom Drescher. “This is the general theme when generalisations to the non-commutative case are studied.”
“The work is at the intersection of algebraic geometry and quantum information and showcases the benefits of interdisciplinary collaboration”, say Gemma De las Cuevas and Tim Netzer.
Gemma De las Cuevas
Department of Theoretical Physics
University of Innsbruck
Tel.: +43 512 507 52247
E-Mail: Gemma.DelasCuevas@uibk.ac.at
Web: https://www.uibk.ac.at/th-physik/delascuevas_group/
Quantum magic squares: Dilations and their limitations. Gemma De las Cuevas, Tom Drescher, and Tim Netzer. Journal of Mathematical Physics 61, 111704 (2020) DOI:10.1063/5.0022344 (https://aip.scitation.org/doi/10.1063/5.0022344) [arXiv:1912.07332; https://arxiv.org/abs/1912.07332]
Merkmale dieser Pressemitteilung:
Journalisten, jedermann
Mathematik, Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).