idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.01.2021 09:04

How short circuits in lithium metal batteries can be prevented

Mia Halleröd Palmgren press officer, Chalmers, mia.hallerodpalmgren@ chalmers.se Kommunikationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    There are high hopes for the next generation of high energy-density lithium metal batteries, but before they can be used in our vehicles, there are crucial problems to solve. An international research team led by Chalmers has now developed concrete guidelines for how the batteries should be charged and operated, maximising efficiency while minimising the risk of short circuits.

    Lithium metal batteries are one of several promising concepts that could eventually replace the lithium-ion batteries which are currently widely used – particularly in various types of electric vehicles.

    The big advantage of this new battery type is that the energy density can be significantly higher. This is because one electrode of a battery cell – the anode – consists of a thin foil of lithium metal, instead of graphite, as is the case in lithium-ion batteries. Without graphite, the proportion of active material in the battery cell is much higher, increasing energy density and reducing weight. Using lithium metal as the anode also makes it possible to use high-capacity materials at the other electrode – the cathode. This can result in cells with three to five times the current level of energy-density.

    Avoiding the ’needles’ which cause punctures and internal short circuits
    The big problem, however, is safety. In two recently published scientific articles in the prestigious journals Advanced Energy Materials and Advanced Science, researchers from Chalmers University of Technology, together with colleagues in Russia, China and Korea, now present a method for using the lithium metal in an optimal and safe way. It results from designing the battery in such a way that, during the charging process, the metal does not develop the sharp, needle-like structures known as dendrites, which can cause short circuits, and, in the worst cases, lead to the battery catching fire. Safety during charging and discharging is the key factor.

    “Short circuiting in lithium metal batteries usually occurs due to the metal depositing unevenly during the charging cycle and the formation of dendrites on the anode. These protruding needles cause the anode and the cathode to come into direct contact with one another, so preventing their formation is therefore crucial. Our guidance can now contribute to this,” says researcher Shizhao Xiong at the Department of Physics at Chalmers.

    Optimised charging provides safer batteries
    There are a number of different factors that control how the lithium is distributed on the anode. In the electrochemical process that occurs during charging, the structure of the lithium metal is mainly affected by the current density, temperature and concentration of ions in the electrolyte.

    The researchers used simulations and experiments to determine how the charge can be optimised based on these parameters. The purpose is to create a dense, ideal structure on the lithium metal anode.

    “Getting the ions in the electrolyte to arrange themselves exactly right when they become lithium atoms during charging is a difficult challenge. Our new knowledge about how to control the process under different conditions can contribute to safer and more efficient lithium metal batteries,” says Professor Aleksandar Matic from Chalmers’ Department of Physics.

    More about: The research project
    The international research collaboration between Sweden, China, Russia and Korea is led by Professor Aleksandar Matic and researcher Shizhao Xiong at the Department of Physics at Chalmers. The research in Sweden is funded by FORMAS, STINT, the EU and Chalmers Areas of Advance.

    More about: The scientific publications

    The article ”Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal”’ has been published in Advanced Science and is written by Yangyang Liu, Xieyu Xu, Matthew Sadd, Olesya O. Kapitanova, Victor A. Krivchenko, Jun Ban, Jialin Wang, Xingxing Jiao, Zhongxiao Song, Jiangxuan Song, Shizhao Xiong and Aleksandar Matic.
    The researchers are active at Lomonosov Moscow State University and the Moscow Institute of Physics and Technology in Russia, Xi’an Jiaotong University in China and at Chalmers University of Technology in Sweden.
    The article ”Role of Li ‐ Ion Depletion on Electrode Surface: Underlying Mechanism for Electrodeposition Behavior of Lithium Metal Anode” has been published in Advanced Energy Materials and is written by Xieyu Xu, Yangyang Liu, Jang‐Yeon Hwang, Olesya O. Kapitanova, Zhongxiao Song, Yang‐Kook Sun, Aleksandar Matic and Shizhao Xiong. The researchers are active at Lomonosov Moscow State University, Russia, Xi’an Jiaotong University in China, Chonnam National University and Hanyang University in Korea, as well as at Chalmers University of Technology in Sweden.

    More about: Next generation batteries
    There are a number of battery concepts which researchers hope will eventually be able to replace today’s lithium-ion batteries. Solid state batteries, lithium-sulphur batteries and lithium air batteries are three oft-mentioned examples. In all these concepts, lithium metal needs to be used on the anode side to match the capacity of the cathode and maximise the energy density of the cell.

    The goal is to produce safe, high energy-density batteries that take us further, at lower cost – both economically and environmentally. So far, researchers estimate that a breakthrough to the next generation of batteries is at least ten years away.
    At Chalmers, research is conducted in a number of projects in the field of batteries and the researchers participate in both national and international collaborations and are part of the large European initiative 2030+ in the BIGMAP project.

    More battery news from Chalmers:

    A spreadable way to stabilise solid state batteries
    Testbed for electromobility gets 575 million SEK
    A new concept for more sustainable batteries
    Graphene sponge paves the way for future batteries
    New center for Swedish batteries

    Read more about Swedish battery research on the website for Batteries Sweden (BASE).


    Wissenschaftliche Ansprechpartner:

    For more information, contact:
    Shizhao Xiong, Researcher, Department of Physics, Chalmers University of Technology, +46 31 7726284, shizhao.xiong@chalmers.se
    Aleksandar Matic​, Professor, Department of Physics, Chalmers University of Technology, +46 31 772 51 76, matic@chalmers.se​

    For more information, contact:
    Shizhao Xiong, Researcher, Department of Physics, Chalmers University of Technology, +46 31 7726284, shizhao.xiong@chalmers.se
    Aleksandar Matic​, Professor, Department of Physics, Chalmers University of Technology, +46 31 772 51 76, matic@chalmers.se​


    Weitere Informationen:

    https://expertsvar.se/wp-content/uploads/2021/01/Sakra-och-effektiva-litiummetal...


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Elektrotechnik, Energie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).