idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.05.2021 17:19

Fehler am Anfang des Lebens

Dr. Carmen Rotte Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie

    Statistisch führt bei Frauen nur jede dritte Befruchtung zu einer erfolgreichen Schwangerschaft. Viele Embryonen überstehen die frühe Entwicklungsphase nicht. Forschende am Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie haben nun mit Kolleginnen und Kollegen am Friedrich-Loeffler-Institut, Institut für Nutztiergenetik in Mariensee und weiteren internationalen Teams ein neues Modellsystem entwickelt, mit dem sich die frühe embryonale Entwicklung untersuchen lässt. So fanden sie heraus, dass schon bei der Vereinigung des elterlichen Erbguts unmittelbar nach der Befruchtung häufig Fehler passieren. Dahinter steckt ein bemerkenswert ineffizienter Prozess.

    Menschliche Körperzellen besitzen in der Regel 46 Chromosomen, die Träger der Erbinformation. 23 erhält jeder Mensch mit dem Spermium vom Vater, 23 mit der Eizelle von der Mutter. Nach der Befruchtung liegen die elterlichen Chromosomen in der Eizelle zunächst in zwei getrennten Zellkernen vor, die man als Vorkerne bezeichnet. Diese bewegen sich langsam aufeinander zu, bis sie sich berühren. Danach löst sich die Hülle der Vorkerne auf, die elterlichen Chromosomen vereinigen sich. Soweit die Theorie.

    Die überwiegende Zahl menschlicher Embryonen erhält allerdings eine falsche Zahl an Chromosomen. Diese Embryonen sind meistens nicht überlebensfähig. Damit ist eine fehlerhafte Chromosomenverteilung ein Hauptgrund für Fehlgeburten und Unfruchtbarkeit.

    „Bei etwa 10 bis 20 Prozent der Embryonen, die eine fehlerhafte Chromosomenzahl aufweisen, bringt bereits die Eizelle zu wenige oder zu viele Chromosomen mit. Das war uns schon bekannt“, erläutert Melina Schuh, Direktorin am MPI für biophysikalische Chemie. „Wieso aber tritt das Problem bei noch viel mehr Embryonen auf? Die Zeit direkt nach der Vereinigung von Spermium und Eizelle – das sogenannte Zygoten-Stadium – schien eine extrem kritische Phase für die Entwicklung eines Embryos zu sein. Wir wollten herausfinden, warum das so ist.“

    Erkenntnisse aus einem neuen Modellsystem

    Für ihre Untersuchungen werteten die Wissenschaftlerinnen und Wissenschaftler zum einen Mikroskopie-Videos menschlicher Zygoten aus, die ein Labor in England aufgenommen hatte. Zum anderen machten sie sich auf die Suche nach einem neuen Modellorganismus, mit dem sich die frühe Embryonalentwicklung detailliert untersuchen lässt. „Wir haben gemeinsam mit unseren Kooperationspartnern am Institut für Nutztiergenetik ein System in Rinder-Embryonen entwickelt, da deren frühe Entwicklung der menschlichen stark ähnelt“, erläutert Tommaso Cavazza, Wissenschaftler in Schuhs Abteilung. „Der zeitliche Ablauf der ersten Zellteilungen ist beispielsweise vergleichbar, außerdem verteilen sich Chromosomen in Rinder-Embryonen etwa ebenso häufig fehlerhaft wie in menschlichen Embryonen.“ Ein weiterer Vorteil: Die Eizellen, aus denen sich die Rinder-Embryonen entwickelten, erhielten die Wissenschaftler aus Schlachtabfällen. Für das neue Modellsystem müssen also nicht eigens Tiere geopfert werden.

    Schuhs Team befruchtete die Rinder-Eizellen im Reagenzglas und verfolgte anschließend mittels Lebend-Zell-Mikroskopie, wie sich das elterliche Erbgut vereint. Wie sie herausfanden, versammeln sich die elterlichen Chromosomen an der Grenzfläche der beiden Vorkerne. Bei manchen Zygoten beobachteten die Forschenden allerdings, dass einzelne Chromosomen aus der Reihe tanzten. In der Folge gingen diese bei der Vereinigung des Erbguts quasi verloren, sodass die entstehenden Kerne zu wenige Chromosomen besaßen. Diese Zygoten zeigten bald Entwicklungsdefekte.

    „Das Ansammeln der Chromosomen an der Vorkern-Grenzfläche scheint ein extrem wichtiger Schritt zu sein“, erklärt Cavazza. „Denn wenn es nicht klappt, passieren in der Zygote folgenschwere Fehler.“

    Abhängig von einem ineffizienten Prozess

    Doch wie kommt es, dass sich die Chromosomen oft nicht korrekt versammeln? Auch das konnten die Max-Planck-Forschenden aufdecken, wie Cavazza berichtet: „Bestandteile des Zellskeletts und der Kernhülle orchestrieren, wohin sich die Chromosomen innerhalb der Vorkerne bewegen. Interessanterweise sind das dieselben Elemente, die auch dafür sorgen, dass sich die beiden Vorkerne aufeinander zu bewegen. Wir haben es also mit zwei eng verknüpften Vorgängen zu tun, die lebenswichtig sind, aber häufig fehlerhaft ablaufen. Dass sich ein Embryo gesund entwickelt, hängt damit von einem bemerkenswert ineffizienten Prozess ab.“

    Die Ergebnisse der Wissenschaftlerinnen und Wissenschaftler sind auch für die künstliche Befruchtung beim Menschen relevant. Hier diskutiert man schon länger, ob die Ansammlung der sogenannten Kernkörperchen an der Vorkern-Grenzfläche als Indikator für die Chance auf eine erfolgreiche Befruchtung nutzen sollte: Zygoten, bei denen sich diese Bestandteile der Vorkerne allesamt an der Grenzfläche sammeln, haben bessere Entwicklungschancen und könnten bevorzugt für eine Kinderwunschbehandlung verwendet werden. „Unsere Beobachtung, dass sich auch die Chromosomen an der Grenzfläche sammeln müssen, um eine gesunde Entwicklung des Embryos zu garantieren, stützt dieses Auswahlkriterium“, so Schuh.


    Wissenschaftliche Ansprechpartner:

    Dr. Melina Schuh, Abteilung Meiose
    Max-Planck-Institut für biophysikalische Chemie
    Tel.: 0551 201-26000
    E-Mail: melina.schuh@mpibpc.mpg.de


    Originalpublikation:

    Cavazza T, Takeda Y, Politi AZ, Aushev M, Aldag P, Baker C, Choudhary M, Bucevičius J, Lukinavičius G, Elder K, Blayney M, Lucas-Hahn A, Niemann H, Herbert M, Schuh M: Parental genome unification is highly error-prone in mammalian embryos. Cell (2021).
    https://doi.org/10.1016/j.cell.2021.04.013


    Weitere Informationen:

    https://www.mpibpc.mpg.de/17816775/pr_2112 – Original-Pressemitteilung
    https://www.mpibpc.mpg.de/de/mschuh – Webseite der Abteilung Meiose, Max-Planck-Institut für biophysikalische Chemie


    Bilder

    Eine Rinder-Eizelle kurz nach der Befruchtung: Das väterliche und mütterliche Erbgut liegt getrennt in zwei Vorkernen. Bevor es sich vereinigt, sammeln sich die Chromosomen (magenta) an der Kontaktfläche der Vorkerne. Das Zellskelett ist blau gefärbt.
    Eine Rinder-Eizelle kurz nach der Befruchtung: Das väterliche und mütterliche Erbgut liegt getrennt ...


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).