idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.06.2021 16:03

Harmonious electronic structure leads to enhanced quantum materials

Dipl.-Übers. Ingrid Rothe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemische Physik fester Stoffe

    The electronic structure of metallic materials determines the behavior of electron transport. Magnetic Weyl semimetals have a unique topological electronic structure - the electron's motion is dynamically linked to its spin. These Weyl semimetals have come to be the most exciting quantum materials that allow for dissipationless transport, low power operation, and exotic topological fields that can accelerate the motion of the electrons in new directions. The compounds Co₃Sn₂S₂ and Co₂MnGa [1-4], recently discovered by the Felser group, have shown some of the most prominent effects due to a set of two topological bands.

    Researchers at the Max Planck Institute for Chemical Physics of Solids in Dresden, the University of South Florida in the USA, and co-workers have discovered a new mechanism in magnetic compounds that couples multiple topological bands. The coupling can significantly enhance the effects of quantum phenomena. One such effect is the anomalous Hall effect that arises with spontaneous symmetry breaking time-reversal fields that cause a transverse acceleration to electron currents. The effects observed and predicted in single crystals of Co₃Sn₂S₂ and Co₂MnGa display a sizable increase compared to conventional magnets.

    In the current publication, we explored the compounds XPt₃, where we predicted an anomalous Hall effect nearly twice the size of the previous compounds. The large effect is due to sets of entangled topological bands with the same chirality that synergistically accelerates charged particles. Interestingly, the chirality of the bands couple to the magnetization direction and determine the direction of the acceleration of the charged particles. This chirality can be altered by chemical substitution. Our theoretical results of CrPt₃ show the maximum effect, where MnPt₃ significantly reduced the effect due to the change in the order of the chiral bands.

    Advanced thins films of the CrPt₃ were grown at the Max Planck Institute. We found in various films a pristine anomalous Hall effect, robust against disorder and variation of temperature. The result is a strong indication that the topological character dominates even at finite temperatures. The results show to be near twice as large as any intrinsic effect measured in thin films. The advantage of thin films is the ease of integration into quantum devices with an interplay of other freedoms, such as charge, spin, and heat. XPt₃ films show possible utilization for Hall sensors, charge-to-spin conversion in electronic devices, and charge-to-heat conversion in thermoelectric devices with such a strong response.

    Figure caption:
    Schematic of a single set of band interactions, where E is the band energy and EF the Fermi energy. A change in chirality or magnetization would cause a change in the anomalous Hall conductivity. Schematic of multiple sets of band interactions, where E is the band energy and EF the Fermi energy. Comparison of off stoichiometric CrPt₃ with elemental metals and magnetic Weyl Semimetals.

    [1] Enke Liu et al., Nat. Phys. 14, 1125 (2018).
    [2] Kaustuv Manna et al., Phys. Rev. X 8, 041045 (2018).
    [3] D. F. Liu, et al. Science 365, 1282–1285 (2019).
    [4] Noam Morali et al. Science 365, 1286–1291 (2019).
    [5] Anastasios Markou et al., Commun. Phys. 4, 104 (2021).


    Wissenschaftliche Ansprechpartner:

    Claudia Felser, MPI CPfS
    Jacob Gayles, University of South Florida


    Originalpublikation:

    Anastasios Markou, Jacob Gayles, Elena Derunova, Peter Swekis, Jonathan Noky, Liguo Zhang, Mazhar N. Ali, Yan Sun, Claudia Felser, “Hard magnet topological semimetals in XPt3 compounds with the harmony of Berry curvature”, Communications Physics 4, 104 (2021). DOI: https://doi.org/10.1038/s42005-021-00608-1


    Weitere Informationen:

    https://www.cpfs.mpg.de/3309493/20210527a?c=2332


    Bilder

    Figure caption: see last paragraph
    Figure caption: see last paragraph

    MPI CPfS


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).