idw - Informationsdienst
Wissenschaft
Unser Erbgut ist so in unseren Zellen gespeichert, dass das meterlange DNA-Molekül in den winzigen Zellkern jeder Körperzelle passt. Ein Team von Forschenden des Max-Planck-Instituts für Biologie des Alterns, des CECAD Exzellenzclusters für Alternsforschung der Universität zu Köln, des University College London und der University of Michigan konnte nun zeigen, dass der Wirkstoff Rapamycin gezielt Darmzellen ansteuert, um die Art und Weise der DNA-Lagerung in diesen Zellen zu verändern. Bei Fliegen und Mäusen konnten dadurch die Darmgesundheit und Langlebigkeit gefördert werden.
Eine unerwartete Verknüpfung zwischen DNA-Aufwicklung und Stoffwechsel im Darm bremst den Alterungsprozess
Unser genetisches Material liegt in Form von DNA in jedem Zellkern unserer Körperzellen vor. Beim Menschen ist dieses DNA-Molekül zwei Meter lang – und doch passt es in den nur wenige Mikrometer großen Zellkern. Dies ist möglich, weil die DNA präzise gelagert wird. Dazu wird sie mehrfach um bestimmte Proteine gewickelt, die sogenannten Histone. Wie eng die DNA um die Histone geschlungen ist, bestimmt auch, welche Gene aus unserem Erbgut abgelesen werden können. Bei vielen Lebewesen verändert sich die Menge der Histone mit steigendem Alter. Bislang ist jedoch unklar, ob Veränderungen der zellulären Histonmenge genutzt werden könnten, um den Alterungsprozess zu verbessern.
Rapamycin ist ein bekannter Anti-Aging-Wirkstoff - mit einem neuen Ziel
Der Wirkstoff Rapamycin gilt inzwischen als eine der vielversprechendsten Anti-Aging-Substanzen und zeigt positive Effekte auf die Gesundheit im Alter. "Rapamycin schaltet den TOR-Signalweg ab, der ein breites Spektrum grundlegender zellulärer Aktivitäten wie Energie-, Ernährungs- und Stresszustand steuert. Kurz gesagt, wir nutzen Rapamycin, um den Hauptregulator des zellulären Stoffwechsels gezielt zu beeinflussen", erklärt Yu-Xuan Lu, Postdoc in der Abteilung von Linda Partridge und Erstautor der Studie. "Inzwischen wissen wir, dass die Menge an Histonen einen entscheidenden Einfluss auf den Alterungsprozess hat. Wir wussten jedoch nicht, ob es eine Verbindung zwischen dem TOR-Signalweg und den Histonmengen gibt, und noch wichtiger, ob die Histonmengen ein medikamentöses Ziel gegen die Alterung sein könnten."
Um die Wirkung von Rapamycin auf Histonproteine zu untersuchen, analysierten die Forschenden verschiedene Organe der Taufliege Drosophila melanogaster. "Wir suchten in verschiedenen Geweben und Organen der Fliege nach auffälligen Veränderungen der Histone vor und nach der Behandlung mit Rapamycin, also vor und nach dem Ausschalten des TOR-Signalweges", erklärt Yu-Xuan Lu. "Überraschenderweise beobachteten wir einen Anstieg der Histonproteine nach der Zugabe von Rapamycin. Dieser Effekt trat ausschließlich im Darm der Fliegen auf, aber nicht in anderen Geweben." In weiteren Experimenten konnten Yu-Xuan Lu und seine Kolleg:innen zeigen, dass der erhöhte Gehalt an bestimmten Histonproteinen in einem bestimmten Darmzelltyp, den Enterozyten, das Tumorwachstum reduzierte, die Darmgesundheit erhöhte und die Lebensspanne der Tiere verlängerte. Ähnliche Beobachtungen wurden in Darm-Enterozyten von Mäusen nach Rapamycin-Behandlung gemacht.
"Unsere Ergebnisse zeigen zum ersten Mal eine Verknüpfung zwischen dem TOR-Signalweg und den Histonmengen, die die Langlebigkeit bestimmt", sagt Yu-Xuan Lu. "Die erhöhten Mengen an Histonproteinen verändern in der Folge, wie die DNA im Zellkern gelagert wird. Die Tatsache, dass wir diese Beobachtungen in Taufliegen und Mäusen machen konnten, zeigt, dass dies ein weit verbreiteter Mechanismus ist." Mit Blick auf zukünftige Experimente fügt er hinzu: "Angesichts der zentralen Rolle der Histone bei der Lagerung der DNA in der Zelle erweitert diese Erkenntnis nicht nur unser Wissen über den Alterungsprozess, sondern bietet auch neue Möglichkeiten für gezielte therapeutische Behandlungen gegen das Altern."
Dieses Projekt wurde von der Horizon 2020 Forschungsinitiative der Europäischen Union, der Glenn Foundation for Medical Research und der Max-Planck-Gesellschaft gefördert. Yu-Xuan Lu wurde durch ein EMBO Long-Term Fellowship unterstützt.
Prof. Dr. Linda Partridge
Max-Planck-Institut für Biologie des Alterns, Köln
Tel.: +49 (0)221 37 970 600
E-Mail: linda.partridge@age.mpg.de
Yu-Xuan Lu, Jennifer C. Regan, Jacqueline Eßer, Lisa F. Drews, Thomas Weinseis, Julia Stinn, Oliver Hahn, Richard A. Miller, Sebastian Grönke und Linda Partridge.
A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing.
eLife, 2021
Online: 14.05.2021, DOI: 10.7554/eLife.62233
URL: https://elifesciences.org/articles/62233
Der Anti-Aging-Wirkstoff Rapamycin beeinflusst die DNA-Wicklung.
Hanna Salmonowicz, Monney Medical Media, 2021
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Medizin
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).