idw - Informationsdienst
Wissenschaft
Wissenschaftsteam weist Existenz von Lipofibroblasten in menschlicher Lunge erstmals eindeutig mit Elektronenmikroskop nach
In der medizinischen Forschung dienen Tiermodelle dazu, Krankheitsentwicklungen aufzuklären und geeignete Therapien zu entwickeln. Um die Ergebnisse auf den Menschen übertragen zu können, muss allerdings gesichert sein, dass die im Einzelnen untersuchten Zelltypen und molekularen Signalwege in unserem Körper auch tatsächlich vorkommen. Für die Forschung an Lipofibroblasten war das bislang nicht eindeutig geklärt. Diese Gruppe von Bindegewebszellen wurde zwar bereits vor etwa 40 Jahren als eigener Zelltyp in der Rattenlunge beschrieben. Ob es solche Zellen auch in der menschlichen Lunge gibt, blieb in der Wissenschaft umstritten. Jetzt hat ein Forschungsteam um Professor Dr. Christian Mühlfeld, kommissarischer Leiter des Instituts für Funktionelle und Angewandte Anatomie der Medizinischen Hochschule Hannover (MHH), diese Zellen zum ersten Mal zweifelsfrei mit dem Elektronenmikroskop nachgewiesen. Die Ergebnisse sind in der Fachzeitschrift American Journal of Respiratory and Critical Care Medicine (Blue Journal) veröffentlicht.
Lipofibroblasten sind spezielle Bindegewebszellen, die kleine Fetttröpfchen (Lipidkörper) enthalten. „Bei vielen Untersuchungen in Mäusen und Ratten wurde festgestellt, dass dieser Zelltyp in der Lunge verschiedene wichtige Funktionen beeinflusst“, sagt Professor Mühlfeld. So spielt die Zelle als Vitamin A-Speicher bei der Entwicklung von Lungenbläschen (Alveolen) eine wichtige Rolle. Neuere Studien am Mausmodell haben außerdem gezeigt, dass sie sich zu Myofibroblasten umbilden können. Dieser Mischtyp aus Zellen des Bindegewebes und der glatten Muskulatur ist wichtig für die Elastizität und Stabilität der Lunge.
Lipofibroblasten bieten wichtige therapeutische Ansätze
Myofibroblasten können jedoch auch übermäßig viel Kollagen produzieren, das Lungengewebe verhärten und so eine Fibrose auslösen, die zu Luftnot führt. Die Zellen lassen sich experimentell aber auch in ihren ursprünglichen Zustand zurückversetzen, so dass die Fibrosebildung gestoppt werden kann. „Lipofibroblasten bieten somit wichtige therapeutische Ansätze für die Behandlung verschiedener Lungenerkrankungen“, erklärt der Mediziner – allerdings nur, wenn sich die Erkenntnisse aus der Lungenforschung an den Nagetieren tatsächlich auf den Menschen anwenden lassen.
Endgültiger Beweis durch Kombination verschiedener Nachweismethoden
Um das zu beantworten, hat das Forschungsteam einen ungewöhnlichen Schritt gemacht. „Wir haben die unterschiedlichen Nachweismethoden aus verschiedenen Forschungspublikationen, die die Existenz der Zellen entweder bestätigen oder anzweifeln, miteinander kombiniert“, erklärt Dr. Julia Schipke, Erstautorin der Studie. In Gewebeschnitten aus gesundem, fibrotischem oder durch zerstörte Lungenbläschen geschädigtem (emphysematösem) menschlichen Lungengewebe, das durch das Team um Professor Dr. Danny Jonigk vom MHH-Institut für Pathologie bereitgestellt worden war, suchte die Biologin nach Lipofibroblasten.
Dabei nutzte Dr. Julia Schipke verschiedene Marker, um unterschiedliche biochemische Eigenschaften der Bindegewebszellen hervorzuheben. Im Fluoreszenzmikroskop erschienen diese dann als farbige Punkte. „Allerdings konnten wir die Zellstrukturen in der relativ geringen Auflösung nicht darstellen und auch die Lipidtropfen nicht eindeutig identifizieren“, sagt die Wissenschaftlerin. Für den endgültigen Beweis musste sie den markerbasierten Nachweis der Zellen mit der hochauflösenden Elektronenmikroskopie kombinieren. Erst der Blick durch das Elektronenmikroskop ergab den finalen Beweis: Die lipidtropfen-haltigen Zellen waren sowohl in den gesunden als auch in den erkrankten Lungen enthalten und in ihrer Struktur gut zu erkennen.
„Damit haben wir nicht nur das erste elektronenmikroskopische Bild der Lipofibroblasten in der menschlichen Lunge geliefert und eine wichtige Lücke in der Lungenforschung geschlossen“, freut sich Professor Mühlfeld. Die in seinem Institut weiterentwickelte Methode der korrelativen Mikroskopie, einzelne Zellen erst im Lichtmikroskop zu lokalisieren, aus dem Schnitt herauszulösen und dann im etwa 500mal stärker vergrößernden Elektronenmikroskop nachzuweisen, lässt sich auch bei der Suche nach anderen Zellen anwenden.
SERVICE:
Weitere Informationen erhalten Sie bei Professor Dr. Christian Mühlfeld, muehlfeld.christian@mh-hannover.de, Telefon (0511) 532-2878 oder bei Dr. Julia Schipke, schipke.julia@mh-hannover.de, Telefon (0511) 532-2997.
Die Originalarbeit „Lipofibroblasts in Structurally Normal, Fibrotic and Emphysematous Human Lungs“ finden Sie unter:
https://www.atsjournals.org/doi/10.1164/rccm.202101-0043LE?url_ver=Z39.88-2003&a...
Dr. Julia Schipke und Professor Christian Mühlfeld vor einem Elektronenmikroskop.
Copyright: Karin Kaiser / MHH
Merkmale dieser Pressemitteilung:
Journalisten
Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).