idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.09.2021 20:07

Schnellere Wundheilung durch programmierte, künstliche Exosomen

Elisabeth Fuhry Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für medizinische Forschung

    Wissenschaftler des MPI für medizinische Forschung und Partner haben synthetische Exosomen entwickelt, die die Signalübertragung zwischen Zellen beim Wundverschluss steuern. Sie sind analog zu den natürlich vorkommenden extrazellulären Vesikeln (EV) aufgebaut und übernehmen eine grundlegende Rolle bei der Kommunikation zwischen Zellen. Die Wissenschaftler*innen haben Schlüsselmechanismen bei der Regulierung der Wundheilung aufgedeckt. Sie zeigen auch erstmals erfolgreich, dass vollsynthetische Exosomen mit therapeutischer Funktionalität konstruiert werden können. Die Ergebnisse wurden kürzlich in Science Advances veröffentlicht.

    Extrazelluläre Vesikel vermitteln zwischen Zellen
    Eine gut funktionierende Kommunikation zwischen Zellen ist für vielzellige Organismen wie den Menschen von grundlegender Bedeutung. Fast alle Prozesse in unserem Körper erfordern ein koordiniertes Zusammenspiel der Zellen, wenn sie Gewebe und Organe bilden oder beispielsweise bei Immunreaktionen zusammenarbeiten. Auch die Wundheilung oder die Neubildung von Blutgefäßen erfordert eine umfangreiche Zell-Zell-Signalgebung, damit sich Gewebe koordiniert regeneriert. Zellen in der Haut nutzen mehrere Mechanismen, um miteinander zu kommunizieren. Einer davon sind extrazelluläre Vesikel (EVs). Sie sind wie kleine Tröpfchen, die Zellen mit verschiedenen Molekülen beladen und freisetzen können, um Information zu übertragen, wie beim Versand von Briefen oder Paketen. Wenn sie an andere Zellen binden oder von diesen aufgenommen werden, geben sie diese Informationen frei. Über die Mechanismen und Signalprozesse, die hinter der Kommunikation durch extrazelluläre Vesikel stehen, ist jedoch wenig bekannt. Dies begrenzt ihre therapeutische Anwendung.

    Learning-by-Building: Vollsynthetische extrazelluläre Vesikel optimieren das System
    Um EVs besser zu verstehen, wählten die Wissenschaftler*innen den Bottom-up-Ansatz der synthetischen Biologie. In Reagenzgläsern entwarfen und bauten sie vollkommen künstliche extrazelluläre Vesikel, um deren natürliches Vorbild in Form und Funktion genau nachzuahmen. Damit wollten sie deren Rolle bei der Wundheilung besser und systematischer erfassen und die Relevanz und Funktion jeder einzelnen Komponente innerhalb der Vesikel verstehen. Durch den Bottom-up-Ansatz konnten die Funktionalitäten der EVs verbessert und eine programmierbare Technologie entwickelt werden. „Wir können synthetische Vesikel mit unterschiedlichsten Eigenschaften herstellen – das ist das Schöne am Bottom-up-Ansatz. Er gibt uns die Chance, natürliche Strukturen für unterschiedliche Zwecke zu kopieren, abzuwandeln und zu verbessern“, sagt Oskar Staufer, Postdoktorand in der Abteilung für Zelluläre Biophysik am MPImF und Erstautor der Veröffentlichung.

    Therapeutischer Einsatz von synthetischen EVs während der Wundheilung
    Um die Funktionalität der synthetischen EVs bei Wundheilungsprozessen zu demonstrieren, untersuchten die Forscher*innen den Heilungsprozess bei im Labor kultivierten, menschlichen Spenderhäuten. Wenn sie Wunden in diesen Häuten mit ihren künstlichen Exosomen behandelten, wurden diese um ein Vielfaches schneller geschlossen. Eine ähnliche Beobachtung machten sie bei der Bildung neuer Blutgefäße – einem Prozess, der in mehreren therapeutischen Kontexten wie der Geweberegeneration nach Operationen und Herzschäden wichtig ist. Diese neue Technologie gibt so auch tiefere Einblicke in die Mechanismen welche durch die EVs in den behandelten Zellen ausstoßen. So konnten die Wissenschaftler*innen auch entscheidende Moleküle in den EVs identifizieren, die den therapeutischen Effekt auslösen. Dieser entscheidende Fortschritt wird es künftig ermöglichen, individuell anpassbare Vesikel mit therapeutischer Bedeutung für die Behandlung vieler Krankheiten wie Krebs, Immunerkrankungen oder neurodegenerativen Erkrankungen zu entwickeln.

    „Exosomen wecken seit mehr als 20 Jahren große Hoffnungen in die Biomedizin“, sagt Oskar Staufer. „Mit dieser neuen Technologie sind wir nun in der Lage, Exosomen mit hoher Reinheit in ausreichenden Mengen für therapeutische Anwendungen zu synthetisieren. Da wir außerdem selbst den Aufbau der EVs kontrollieren, können wir jetzt die grundlegenden Funktionen von EV sehr systematisch erforschen.“


    Wissenschaftliche Ansprechpartner:

    Oskar Staufer (oskar.staufer@mr.mpg.de)


    Originalpublikation:

    https://www.science.org/doi/10.1126/sciadv.abg6666


    Bilder

    Zellen im Labor kultivierter, menschlicher Spenderhäute (grau und cyan) werden durch die Aufnahme künstlicher Exosome (lila) beeinflusst.
    Zellen im Labor kultivierter, menschlicher Spenderhäute (grau und cyan) werden durch die Aufnahme kü ...

    MPI für medizinische Forschung


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).