idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
27.09.2021 21:00

Wie Geologie die Artenvielfalt formt

Lina Ehlert Hochschulkommunikation
Eidgenössische Technische Hochschule Zürich (ETH Zürich)

    Dank eines neuen Computermodells können Forschende der ETH Zürich nun besser erklären, weshalb die Regenwälder Afrikas weniger Arten beherbergen als die Tropenwälder Südamerikas und Südostasien. Der Schlüssel zu einer hohen Artenvielfalt ist, wie dynamisch sich die Kontinente über die Zeit entwickelt haben.

    Tropische Regenwälder sind die artenreichsten Lebensräume der Erde. Sie beherbergen eine riesige Zahl von verschiedenen Pflanzen, Tieren, Pilzen und weiterer Organismen. Diese Wälder liegen mehrheitlich auf drei Kontinenten, darunter das Amazonasbecken in Südamerika, das Kongo-Becken in Zentralafrika und das riesige Inselarchipel Südostasiens.

    Nun könnte man annehmen, dass alle tropischen Regenwälder aufgrund des stabil warmfeuchten Klimas und ihrer geografischen Lage rund um den Äquator in etwa gleich artenreich sind – das trifft jedoch nicht zu. Verglichen mit Südamerika und Südostasien ist die Artenzahl in feuchten Tropenwäldern Afrikas bei vielen Organismengruppen deutlich kleiner.

    Palmenvielfalt in Afrika viel kleiner

    Diese ungleiche Verteilung – Forschende sprechen von der «pantropischen Diversitätsdisparität» (PDD) - lässt sich anhand von Palmen gut illustrieren: Von den weltweit 2500 Arten kommen 1200 in Südostasien und 800 in den Tropenwäldern Südamerikas vor, aber nur 66 in afrikanischen Regenwäldern.

    Weshalb dem so ist, ist unter Biodiversitätsforschenden umstritten. Einige Indizien sprechen dafür, dass das gegenwärtige Klima für die geringere Artenvielfalt in Afrikas Tropenwäldern die Ursache ist. So ist das Klima in Afrikas Tropengürtel trockener und kühler als das in Südostasien und Südamerika.

    Andere Hinweise sprechen eher dafür, dass sich die unterschiedliche Entwicklung der Umwelt und der Plattentektonik der drei Tropenwaldzonen über Dutzende Millionen von Jahren auf die Entstehung unterschiedlich grosser Biodiversität auswirkte. Zu solchen Veränderungen gehören beispielsweise die Bildung von Gebirgen, Inseln oder Trocken- und Wüstengebieten.

    Die beiden Faktoren – gegenwärtiges Klima und Umweltgeschichte - lassen sich jedoch nur schwer auseinanderhalten.

    Gebirgsbildung förderte Artenvielfalt

    Forschende der ETH Zürich unter der Federführung von Loïc Pellissier, Professor für Landschaftsökologie, sind nun dieser Frage mithilfe eines neuen Computermodelles nachgegangen. Dieses Modell erlaubt es ihnen, die Evolution und Diversifizierung der Arten über viele Millionen von Jahren hinweg zu simulieren. Die Forschenden kommen zum Schluss, dass das gegenwärtige Klima nicht der Hauptgrund sei, weshalb die Artenvielfalt in den Regenwäldern Afrikas geringer ist. Die Artenvielfalt, so schliessen sie aus den Simulationen, wurde durch die Dynamik der Gebirgsbildung und Klimaveränderungen hervorgebracht. Die Ergebnisse der Simulationen decken sich weitgehend mit den heute beobachtbaren Mustern der Biodiversitätsverteilung.

    «Unser Modell bestätigt, dass Unterschiede in der Dynamik der frühzeitlichen Umwelt die ungleiche Verteilung der Artenvielfalt hervorbrachten und nicht aktuelle klimatische Faktoren», sagt Pellissier. «Geologische Prozesse sowie globale Temperaturflüsse bestimmen, wo und wann Arten entstehen oder aussterben.»

    Entscheidend für eine hohe Artenvielfalt auf einem Kontinent ist insbesondere die Dynamik geologischer Prozesse. Aktive Plattentektonik fördert die Gebirgsbildung, wie die Anden in Südamerika, oder die Entstehung von Insel-Archipelen wie in Südostasien. Beide Prozesse führen dazu, dass sich viele neue ökologische Nischen bilden, in denen wiederum zahlreiche neue Arten entstehen. Der Regenwaldgürtel Afrikas hingegen war in den vergangenen 110 Millionen Jahre tektonisch weniger aktiv. Auch war dieser Tropenwald verhältnismässig klein, da er von Trockengebieten im Norden und Süden begrenzt war und sich nicht weiter ausdehnen konnte. «Arten aus Regenwäldern können sich kaum an die Verhältnisse der umgebenden Trockengebiete anpassen», betont Pellissier.

    Neues Modell

    Das von ETH-Forschenden entwickelte Modell «gen3sis» wurde erst kürzlich im Fachjournal PLoS Biology vorgestellt. Es ist ein mechanistisches Modell, in welchem die primären Rahmenbedingungen wie die Geologie und das Klima sowie die biologischen Mechanismen eingebaut sind und aus welchen die Biodiversitätsmuster hervorgehen. Um die Entstehung der Biodiversität zu simulieren, müssen folgende wichtige Prozesse im Modell integriert werden: Ökologie (jede Art hat ihre begrenzte ökologische Nische), Evolution, Artbildung (engl: speciation) und Ausbreitung (engl: dispersal).

    «Mit diesen vier grundlegenden Regeln können wir die Bestandsdynamik von Organismen vor dem Hintergrund von sich verschiebenden Umweltbedingungen simulieren. Dadurch können wir auch sehr gut erklären, wie die Organismen entstanden», sagt Pellissier.

    Indem die Forschenden ihr Modell auf diesen grundlegenden evolutionären Mechanismen aufbauen, können sie die Artenvielfalt simulieren, ohne dass sie es mit (Verbreitungs-)Daten für jede einzelne Art füttern müssen. Das Modell braucht jedoch Daten über die Dynamik der betrachteten Kontinente in der Erdgeschichte sowie über die Feuchtigkeit und Temperaturen aus Klimarekonstruktionen.

    Pellissier und seine Mitarbeitenden sind nun dabei, das Modell zu verfeinern. Mit weiteren Simulationen wollen sie verstehen, wie Biodiversität in anderen artenreichen Regionen entstanden ist, etwa in den Gebirgen Westchinas. Der Modellcode und die Rekonstruktionen der frühzeitlichen Umwelt sind quelloffen. Alle interessierten Evolutions- und Biodiversitätsforschenden können ihn nutzen, um die Bildung von Artenvielfalt in verschiedensten Regionen der Welt zu untersuchen.


    Wissenschaftliche Ansprechpartner:

    Loïc Pellissier, Professor für Landschaftsökologie, +41 44 632 32 03,loic.pellissier@usys.ethz.ch


    Originalpublikation:

    https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001340


    Bilder

    In den Tropen Südamerikas ist die Artenvielfalt viel höher als in Afrika - im Bild ein Swainson-Tukan
    In den Tropen Südamerikas ist die Artenvielfalt viel höher als in Afrika - im Bild ein Swainson-Tuka ...
    Bild Andy Morffew via Wikimedia
    Die Bilder dürfen für redaktionelle Zwecke verwendet werden, sofern der Kontext zur ETH Zürich erkennbar ist. Eine kom


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Geowissenschaften, Informationstechnik, Tier / Land / Forst
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).