idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.11.2021 16:52

More efficient together

Dr. Manuel Maidorn Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

    Mechanically coupled enzymes show an increase in their catalytic efficiency – this is the result from a study by the group of Ramin Golestanian and Jaime Agudo-Canalejo from the Max Planck Institute for Dynamics and Self-Organization. The researchers concluded that enzymes can benefit from cooperation and avoid the activation energy required for individual enzymes. This way, two enzymes can work hand-in-hand to achieve an overall faster turnover of a chemical reaction. The study was recently published in Physical Review Letters.

    It is known that, in biological systems, enzymes aggregate together in clusters which support the catalytic activity of these essential molecules. The close proximity between different enzymes has generally been assumed to be beneficial: if the product molecule from the reaction catalyzed by one enzyme is subsequently used in the reaction catalyzed by a different kind of enzyme, resulting in enzymes ‘handing over’ molecules from one to another. However, an increase in efficiency has also been observed when enzymes of the same kind, which are catalyzing the same reaction, cluster together. Up to now, the advantage of this organization was not understood, but the new study shows that proximity between identical enzymes can lead to a substantial improvement in their catalytic efficiency.

    “We have shown that mechanical coupling between nearby enzymes can cause them to synchronize, and at the same time to boost their catalytic activity” says Jaime Agudo-Canalejo, first author of the study. He explains: “In fact, what would normally be a single catalytic event for an isolated enzyme becomes a burst of many catalytic events when two enzymes interact with each other.”

    A common principle in biology

    There are several other examples for synchronization in a biological context. One prominent example are cilia which are beating in a coordinated and periodical manner to enable lateral transport. Likewise, cardiac cells follow a synchronous pattern to ensure a periodic beating of the heart.

    Along the same lines, general enzymatic activity was now described to benefit from mutual synchronization: “It is very exciting to learn that enzymes have evolved to take advantage of such sophisticated strategies to function cooperatively and efficiently at the molecular scale. This mechanism may be advantageous in signaling processes that require a coordinated response to an external input. Moreover, a boost in catalysis should have important consequences in the cellular metabolism” explains Ramin Golestanian, principal investigator of the study and director at the MPIDS.
    New physics at the molecular scale

    The mechanism for synchronization unveiled in this work involves enzymes that undergo small changes in shape during a catalytic step. When two such enzymes are close by, either directly attached to each other or interacting indirectly through the surrounding physical medium (for example a cellular membrane), expansion of one enzyme will cause contraction of the other. This way, they take turns in driving each other through their catalytic cycle. According to the model, this can create a long burst of catalytic activity, which will last until a thermal fluctuation eventually pauses the overall catalytic activity of the enzyme complex. Moreover, the onset of the cooperativity is achieved through a topological transition, which makes the phenomenon particularly fascinating at a more fundamental level.

    “The mechanism which we uncovered in this molecular-scale system represents a novel kind of synchronization mechanism, which is qualitatively different from those present in previously-studied larger-scale systems” concludes Ramin Golestanian. “The model thus opens a plethora of new avenues for research in the field.”


    Originalpublikation:

    https://doi.org/10.1103/PhysRevLett.127.208103


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).