idw - Informationsdienst
Wissenschaft
Die Mitosezählung ist ein wichtiges Tool für die mikroskopische Einschätzung, ob ein Tumor sich im Patienten ausbreiten wird. Trotz ihres Nutzens hat diese Untersuchungsmethode bisher einen deutlichen Nachteil: Abhängig von der untersuchenden Person unterscheiden sich die Ergebnisse, was zu falschen Diagnosen führen kann – oder anders gesagt zur fehlerhaften Beurteilung, ob ein Tumor bösartig ist. Ein Forschungsteam unter Leitung der Vetmeduni hat die bisherige Methode nun mithilfe Künstlicher Intelligenz (Deep Learning) verbessert und damit die Zuverlässigkeit deutlich erhöht: Sowohl die Genauigkeit als auch die Reproduzierbarkeit der 23 Untersucher:innen konnte deutlich erhöht werden.
Die Mitose ist die Phase im Zellzyklus, bei welcher das genetische Material verdoppelt und auf zwei Tochterzellen aufgeteilt wird. Die Anzahl der Mitosen in Gewebeproben gibt Hinweise auf Zellteilungsaktivität und somit auf die Bösartigkeit von Tumoren. In der pathologischen Diagnostik wird die Untersuchung der Mitose in Gewebeproben eingesetzt, um einzuschätzen ob sie gutartig oder bösartig sind. Obwohl die sogenannte Mitosezählung ein wichtiger histologischer Parameter für die Bewertung von Tumoren ist, hat sie eine Schwachstelle, nämlich dort, wo der Mensch ins Spiel kommt. Denn die Patholog:innen müssen nicht nur entscheiden, welcher Teil der Gewebeprobe untersucht wird, sondern sie müssen auch Mitosen von anderen, zum Teil sehr ähnlichen Strukturen, unterscheiden. Dies führt beim Befunden immer wieder zur falschen Einschätzung der Zellteilungsaktivität des Tumors.
Hochleistungsalgorithmen auf Basis von Deep Learning
Jüngste Fortschritte auf dem Gebiet der Künstlichen Intelligenz, insbesondere durch Deep Learning, haben die Entwicklung von Hochleistungsalgorithmen ermöglicht, die die Standardisierung der Mitosezählung verbessern können. Das unterstreicht eine soeben veröffentlichte internationale Studie unter Leitung der Vetmeduni. Mittels Gewebeproben von Hunden wurde untersucht, wie algorithmische Vorhersagen Patholog:innen dabei unterstützen können, mitotische Hotspots zu erkennen und die Unterscheidung von Mitosen gegen anderen Zellen zu verbessern.
Computerunterstützung verbessert Befunde signifikant
„Unsere Ergebnisse zeigen, dass die Unterstützung mit einem genauen Deep-Learning-basierten Modell eine vielversprechende Methode zur Verbesserung der Reproduzierbarkeit und Genauigkeit von Mitosezählungen in histologischen Tumorschnitten ist“, so Studien-Erstautor Christof A. Bertram vom Institut für Pathologie der Vetmeduni. Dabei war die vollständige Computerunterstützung (Unterstützung bei der Auswahl der Untersuchungsareale und bei der Erkennung von Mitosen) der teilweisen Computerunterstützung, welche sich auf die Auswahl der Untersuchungsareale beschränkte, überlegen.
Genauer und kostengünstiger
Die Studie zeigt laut Bertram auch, „dass die computergestützte Mitosezählung eine wertvolle Methode zur Standardisierung in zukünftigen Forschungsstudien und routinemäßigen diagnostischen Tumorbewertungen mittels digitaler Mikroskopie sein kann.“ Eine genaue und reproduzierbare Krebsdiagnose ist wichtig um eine angemessene Therapie der Tumorpatienten zu finden. Darüber hinaus könnten Diagnose-Labore von der hybriden Untersuchungsmethode durch eine verbesserte Arbeitseffizienz – beispielsweise aufgrund der computerunterstützten Vorauswahl der Untersuchungsareale – profitieren, was auch Kostenvorteile bringen und damit das Gesundheitssystem entlasten könnte.
###
Der Artikel „Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy“ von Christof A. Bertram, Marc Aubreville, Taryn A. Donovan, Alexander Bartel, Frauke Wilm, Christian Marzahl, Charles-Antoine Assenmacher, Kathrin Becker, Mark Bennett, Sarah Corner, Brieuc Cossic, Daniela Denk, Martina Dettwiler, Beatriz Garcia Gonzalez, Corinne Gurtner, Ann-Kathrin Haverkamp, Annabelle Heier, Annika Lehmbecker, Sophie Merz, Erica L. Noland, Stephanie Plog, Anja Schmidt, Franziska Sebastian, Dodd G. Sledge, Rebecca C. Smedley, Marco Tecilla, Tuddow Thaiwong, Andrea Fuchs-Baumgartinger, Donald J. Meuten, Katharina Breininger, Matti Kiupel, Andreas Maier und Robert Klopfleisch wurde in „Veterinary Pathology“ veröffentlicht.
Dr.med.vet. Christof A. Bertram
Institut für Pathologie
Veterinärmedizinische Universität Wien (Vetmeduni)
Christof.Bertram@vetmeduni.ac.at
https://journals.sagepub.com/doi/full/10.1177/03009858211067478
https://www.vetmeduni.ac.at/universitaet/infoservice/presseinformationen-2022/ku...
Merkmale dieser Pressemitteilung:
Journalisten, jedermann
Biologie, Medizin, Tier / Land / Forst
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).