idw - Informationsdienst
Wissenschaft
Vor einigen Jahren zeigte ein neuartiges Messverfahren, dass Protonen wohl kleiner sind als seit den 1990er Jahren angenommen. Dies überraschte die Fachwelt; manche Forschende glaubten sogar, das Standardmodell der Teilchenphysik müsse geändert werden. Physiker der Universität Bonn und der TU Darmstadt haben nun eine Methode entwickelt, mit der sie die Ergebnisse älterer und neuerer Experimente deutlich umfassender als bislang analysieren können. Damit ergibt sich auch aus den älteren Daten ein geringerer Protonenradius. Es gibt also wahrscheinlich keinen Unterschied zwischen den Werten - egal, auf welchem Messverfahren sie basieren. Die Studie ist in den Physical Review Letters erschienen.
Unser Bürostuhl, die Luft, die wir atmen, die Sterne am Nachthimmel: Sie alle bestehen aus Atomen, die sich wiederum aus Elektronen, Protonen und Neutronen zusammensetzen. Elektronen sind negativ geladen; sie haben nach heutigem Kenntnisstand keine Ausdehnung, sondern sind punktförmig. Bei den positiv geladenen Protonen ist das anders - ihr Radius beträgt aktuellen Messungen zufolge 0,84 Femtometer (ein Femtometer ist ein Billiardstel Meter).
Bis vor wenigen Jahren dachte man allerdings noch, sie seien 0,88 Femtometer groß - ein winziger Unterschied, der in der Fachwelt jedoch für erhebliche Furore sorgte. Denn er ließ sich nicht so einfach erklären. Manche Expertinnen und Experten hielten ihn sogar für einen Hinweis darauf, dass das Standardmodell der Teilchenphysik falsch sei und abgeändert werden müsse. „Unsere Analysen deuten jedoch darauf hin, dass dieser Unterschied zwischen den alten und neuen Messwerten gar nicht existiert“, erklärt Prof. Dr. Ulf Meißner vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. „Stattdessen waren die älteren Werte mit einem systematischen Fehler behaftet, der bislang deutlich unterschätzt wurde.“
Billardspiel im Teilchenkosmos
Um den Radius eines Protons zu bestimmen, kann man es in einem Beschleuniger mit einem Elektronenstrahl beschießen. Wenn ein Elektron auf das Proton stößt, ändern beide ihre Bewegungsrichtung - ähnlich wie bei der Kollision zweier Billardkugeln. In der Physik bezeichnet man diesen Vorgang als elastische Streuung. Je größer das Proton, desto häufiger kommt es zu solchen Kollisionen. Aus Art und Ausmaß der Streuung lässt sich daher seine Ausdehnung berechnen.
Je höher dabei die Geschwindigkeit des Elektronenstrahls, desto genauere Messungen sind möglich. Allerdings steigt damit auch die Gefahr, dass Elektron und Proton beim Zusammenstoß neue Teilchen bilden. „Bei hohen Geschwindigkeiten oder Energien geschieht das immer häufiger“, erklärt Meißner, der auch Mitglied in den Transdisziplinären Forschungsbereichen „Mathematik, Modellierung und Simulation komplexer Systeme“ und „Bausteine der Materie und fundamentale Wechselwirkungen“ ist. „Die elastischen Streuungs-Ereignisse werden im Gegenzug seltener. Daher hat man für Messungen der Protonengröße bislang nur Beschleunigerdaten verwandt, bei denen die Elektronen eine relativ geringe Energie hatten.“
Im Prinzip liefern aber auch Kollisionen, bei denen andere Teilchen entstehen, wichtige Einblicke in die Form des Protons. Das gilt ebenso für ein weiteres Phänomen, das bei hohen Geschwindigkeiten des Elektronenstrahls auftritt - die sogenannte Elektron-Positron Vernichtung. „Wir haben eine theoretische Basis entwickelt, mit der sich auch solche Ereignisse für die Berechnung des Protonenradius nutzen lassen“, sagt Prof. Dr. Hans-Werner Hammer von der TU Darmstadt. „Dadurch können wir Daten berücksichtigen, die bislang außen vor bleiben.“
Fünf Prozent kleiner als 20 Jahre angenommen
Mit dieser Methode haben die Physiker die Messwerte aus älteren, aber auch ganz aktuellen Experimenten neu analysiert – inklusive denen, die bislang einen Wert von 0,88 Femtometern nahelegten. Mit ihrem Verfahren kamen die Forscher jedoch auf 0,84 Femtometer; das ist der Radius, der auch in neuen Messungen gefunden wurde, die auf einer ganz anderen Methodik basieren.
Das Proton scheint also tatsächlich rund 5 Prozent kleiner zu sein, als in den 1990er und 2000er Jahren angenommen wurde. Gleichzeitig erlaubt das Verfahren der Forscher auch neue Einblicke in die Feinstruktur von Protonen und ihrer ungeladenen Geschwister, der Neutronen. Es hilft uns also dabei, den Aufbau der Welt um uns herum etwas besser zu verstehen - des Stuhls, der Luft, aber auch der Sterne am Nachthimmel.
Förderung:
Die Studie wurde durch die Deutsche Forschungsgemeinschaft (DFG), die National Natural Science Foundation of China (NSFC), die Volkswagen-Stiftung, das EU Horizon 2020-Programm und das Bundesministerium für Bildung und Forschung (BMBF) gefördert.
Prof. Dr. Ulf-G. Meißner
Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn
Telefon: 0228/73-2365
E-Mail: meissner@hiskp.uni-bonn.de
Yong-Hui Lin, Hans-Werner Hammer und Ulf-G. Meißner: New insights into the nucleon’s electromagnetic structure; Physical Review Letters, https://doi.org/10.1103/PhysRevLett.128.052002
Merkmale dieser Pressemitteilung:
Journalisten, jedermann
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).