idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.03.2022 16:54

Decades-old Erdős conjecture cracked

Markus Feigl Communications and Events
Institute of Science and Technology Austria

    Some of the most famous problems in mathematics remain unsolved for centuries. For Erdős’ conjecture, it took fifty years for a solution to be found. Professor Matthew Kwan from the Institute of Science and Technology Austria (ISTA) and mathematicians from Harvard and MIT present a proof that shows the existence of so-called high-girth Steiner triple systems.

    When Matthew Kwan heard about the Erdős conjecture during his studies, he did not expect to be part of proving this infamous mathematical theorem. In a new paper, Kwan and colleagues prove the existence of Steiner triple systems with arbitrarily high girth. For the sophisticated proof, the new ISTA faculty member Kwan collaborated with colleague Michael Simkin from Harvard University and two prodigy graduate students Ashwin Sah and Mehtaab Sawhney from the Massachusetts Institute of Technology (MIT).

    Steiner triple systems are fundamental types of combinatorial designs, which have their roots in the design of scientific experiments. For example, it is important to know which grain types can flourish in various soils with different properties. How to probe all these combinations efficiently? You can in fact reduce the number of experiments with clever combinatorics. Nowadays, researchers in combinatorial design theory study more abstract settings than agriculture. Their results are relevant to computer programming and coding theory. Yet, even fundamental problems have remained unsolved. This included Erdős’ conjecture – until now.

    The meaning of Erdős’ conjecture

    The conjecture is concerned with so-called Steiner triple systems. Assume seven people want to form triples. Each person can be part of multiple triples, yet each pair of persons can only be part of exactly one triple. What does that mean? One individual A can be part of three triples then, forming the first triple with B and C, the second one with E and F, and the third one with D and G. At the same time, everyone else searches for partners. B for instance would not be allowed to join any triples that contain A or C because they already met them in the initial ABC triple. However, B can form two other triples still. In fact, with seven people – or points, as they are called in designs –, exactly seven triples are possible, making it a Steiner triple system.

    The mathematicians showed that Steiner triple systems with the desirable property of high girth indeed exist. High girth is a statistical condition. When many triples span over a small number of points the girth is low. “Many triples across few points, such dense spots inevitably appear with algebraic designs,” explains Kwan. “Erdős wondered whether you could avoid them. Where triples have no such configurations, the system is said to possess high girth. To prove their existence, you must avoid algebra and bring in probabilistic methods. That´s what we managed to do.”

    Interdisciplinarity inside mathematics

    In design theory, perhaps oldest field of combinatorics, there has been limited progress on fundamental questions until eight years ago. Related to Kwan’s background of probabilistic combinatorics, several probabilistic results revolutionized the field since game-changing advances in 2014. The sophisticated new proof comprises a wide array of techniques at the frontier of extremal and probabilistic combinatorics. “Additionally, we used two novel methods: Retrospective analysis, which allows us to keep track of the randomness in previous steps, and sparsification, which deals with all the obstacles that relate to that,” summarizes Kwan the technical aspects of the result.

    With his group at ISTA, Kwan seeks to get a better fundamental understanding of designs, especially from a viewpoint of probability. “My philosophy of mathematics: I try to work on different things. It may be tempting to really focus on just one subfield, but when you work on various problems throughout your life, you discover techniques that help you succeed in other areas.”


    Originalpublikation:

    Kwan E, Sah A, Sawhney M and Simkin M. 2022. High-girth Steiner triple systems. Preprint. arXiv:2201.04554v3


    Bilder

    The Fano plane is a Steiner triple system. Each point forms three triples, indicated by connecting lines of the same color, while every pair of points is part of exactly one triple.
    The Fano plane is a Steiner triple system. Each point forms three triples, indicated by connecting l ...

    Copyright: © ISTA

    Professor Matthew Kwan. Having settled at ISTA in 2021, the mathematician already proved the Erdős conjecture in cooperation with colleagues from Harvard and MIT.
    Professor Matthew Kwan. Having settled at ISTA in 2021, the mathematician already proved the Erdős c ...

    Copyright: © Matthew Kwan


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Mathematik
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).