idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
12.05.2022 20:00

When quantum particles fly like bees

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    A quantum system consisting of only 51 charged atoms can assume more than two quadrillion different states. Calculating the system's behavior is a piece of cake for a quantum simulator. Yet even with today's supercomputers it is almost impossible to verify the result. A research team from the University of Innsbruck and the Technical University of Munich (TUM) has now shown how these systems can be described using equations from the 18th century.

    At first glance, a system consisting of 51 ions may appear simple. But even if these charged atoms can only assume two different states, there will be more than two quadrillion (10^15) different configurations which the system can realize.

    The behavior of such a system can therefore hardly be calculated with conventional computers. Especially since once an excitation has been introduced into the system, it can propagate in leaps and bounds. It follows a statistic known as Lévy flight.

    A characteristic of the movement of such a quantum particle is that, in addition to the smaller jumps, also significantly larger jumps occur. This phenomenon can also be observed in the flight of bees and in unusual fierce movements in the stock market.

    Simulating quantum dynamics: A classically hard problem

    While simulating the dynamics of a complex quantum system is a very hard problem even for super computers, the task is a piece of cake for quantum simulators. But how are you supposed to check the results of a quantum simulator when you cannot recalculate them?

    Theoretical predictions suggested that it might be possible to represent at least the long-term behavior of such systems with equations as those developed by the Bernoulli brothers in the 18th century to describe the behavior of fluids.

    To test this hypothesis, the research team used a quantum system that simulates the dynamics of quantum magnets. With this they were able to show that after an initial regime in which quantum-mechanical effects dominate, the system can be described by equations known from fluid dynamics.

    Furthermore, they showed that the very same Lévy flight statistics which describes the search strategies of bees also describes the fluid-dynamics in this quantum system.

    Trapped ions as a platform for controlled quantum simulations

    The quantum simulator was built at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences on the campus of the University of Innsbruck, Austria. "Our system effectively simulates a quantum magnet by representing the north and south poles of an elementary magnet by two energy levels of the ions," says IQOQI Innsbruck scientist Manoj Joshi.

    "Our biggest technical advance was that we succeeded in controlling each one of the 51 ions individually," observes Manoj Joshi. "As a result, we were able to investigate the dynamics of different initial states, which was necessary to demonstrate the emergence of the fluid dynamics."

    "While the number of qubits and the stability of the quantum states is currently still very limited, there are problems for which we can already now use the enormous computing power of quantum simulators," says Michael Knap, Professor for Collective Quantum Dynamics at the Technical University of Munich.

    "Near-term quantum simulators and quantum computers will be ideal platforms to explore the dynamics of complex quantum systems," explains Michael Knap. "Now we know that after a certain point in time these systems follow the laws of classical fluid dynamics. Any strong deviation from that is an indication that the simulator is not working properly."


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Michael Knap
    Professorship of Collektive Quantum Dynamics
    Technical University of Munich
    James-Franck-Str. 1, 85748 Garching, Germany
    Tel.: +49 89 289 53777 – E-Mail: michael.knap@ph.tum.de
    Web: https://www.ph.nat.tum.de/cmt/home/

    Prof. Dr. Christian RoosInstitute for Experimental Physics
    Universität Innsbruck
    Technikerstraße 25, 6020 Innsbruck, Austria
    Tel.: +43 512 507 4728 – E-Mail: christian.roos@uibk.ac.at
    Web: https://www.uibk.ac.at/sp-physik/research-groups/c-ross.html.en


    Originalpublikation:

    Observing emergent hydrodynamics in a long-range quantum magnet. M. K. Joshi, F. Kranzl, A. Schuckert, I. Lovas, C. Maier, R. Blatt, M. Knap, C. F. Roos. Science, 13.05.2022 – DOI: 10.1126/science.abk2400 [https://arxiv.org/abs/2107.00033]


    Bilder

    "Levy flights" describe statistical properties of elementary quantum magnets as well as of bees foraging for food.
    "Levy flights" describe statistical properties of elementary quantum magnets as well as of bees fora ...

    Christoph Hohmann (MCQST Cluster)


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).