idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.05.2022 11:26

Rhythmical deep sleep

Dr. Susanne Diederich Stabsstelle Kommunikation
Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

    Researchers at the German Primate Center study influence of anesthetics on brain functions

    Modern anesthesia is one of the most important medical achievements. Whereas before, patients had to suffer hellish agonies during every operation, today anesthesia enables completely painless procedures. One feels nothing and can remember nothing afterwards. It is already known from electroencephalography (EEG) studies on patients that during anesthesia the brain is put into a deep sleep-like state in which periods of rhythmic electrical activity alternate with periods of complete inactivity. This state is called burst-suppression. Until now, it was unclear where exactly this state happens in the brain and which brain areas are involved. However, this question is important to better understand the phenomenon and thus how the brain functions under anesthesia. Researchers from the Functional Imaging Unit at the German Primate Center (DPZ) – Leibniz Institute for Primate Research in Göttingen have used functional magnetic resonance imaging (fMRI) to study the precise spatial distribution of synchronously working brain regions in anesthetized humans, long-tailed macaques, common marmosets and rats. They were able to show for the first time that the areas where burst-suppression is evident differ significantly in primates and rodents. While in rats large parts of the cerebral cortex synchronously show the burst-suppression pattern, in primates individual sensory regions, such as the visual cortex, are excluded from it (eLife).

    “Our brain can be thought of as a full soccer stadium when we are awake,” explains Nikoloz Sirmpilatze, a scientist in the Functional Imaging Unit and lead author of the study. “Our active neurons are like tens of thousands of spectators all talking at once. Under anesthesia, however, neuronal activity is synchronized. You can measure this activity using EEG as uniform waves, as if all the spectators in the stadium were singing the same song. In deep anesthesia, this song is repeatedly interrupted by periods of silence. This is called burst-suppression. The deeper the anesthesia, the shorter the phases of uniform activity, the bursts, and the longer the periodically recurring inactive phases, the so-called suppressions.”

    The phenomenon is caused by many different anesthetics, some of which vary in their mechanisms of action. And burst-suppression is also detectable in coma patients. However, it is not known whether this condition is a protective reaction of the brain or a sign of impaired functioning. It has also been unclear where in the brain burst-suppression occurs and which brain areas are involved, as localization by EEG alone is not possible.

    To answer this question, Nikoloz Sirmpilatze and the researcher team used the imaging technique of fMRI. The method makes blood flow changes in the brain visible. The increased activity of neurons in a particular area of the brain leads to an increase in metabolism, followed by an increased blood and oxygen supply at this location, which is ultimately visible in the fMRI image.

    In the first part of the study, the researchers established a system to evaluate fMRI data in humans, monkeys and rodents in a standardized manner using the same method. To do this, they used simultaneously-measured EEG and fMRI data from anesthetized patients that had been generated in a previously conducted study at the Technical University of Munich. “We first looked to see whether the burst-suppression detected in the EEG was also visible in the fMRI data and whether it showed a certain pattern,” says Nikoloz Sirmpilatze. “Based on that, we developed a new algorithm that allowed detecting burst-suppression events in the experimental animals using fMRI, without additional EEG measurement.”

    The researchers then performed fMRI measurements in anesthetized long-tailed macaques, common marmosets and rats. In all animals, they were able to detect and precisely localize burst-suppression as a function of anesthetic concentration. The spatial distribution of burst-suppression showed that in both humans and monkey species, certain sensory areas, such as the visual cortex, were excluded from it. In contrast, in the rats, the entire cerebral cortex was affected by burst-suppression.

    “At the moment, we can only speculate about the reasons,” says Nikoloz Sirmpilatze, who was awarded the German Primate Center's 2021 PhD Thesis Award for his work. “Primates orient themselves mainly through their sense of sight. Therefore, the visual cortex is a highly specialized region that differs from other brain areas by special cell types and structures. In rats, this is not the case. In future studies, we will investigate what exactly happens in these regions during anesthesia to ultimately understand why burst-suppression is not detectable there with fMRI.”

    Susann Boretius, head of the Functional Imaging Unit and senior author of the study adds: “The study not only raises the question of the extent to which rodents are suitable models for many areas of human brain research, especially when it comes to anesthesia, but the results also have many implications for neuroscience and the evolution of neural networks in general.”


    Wissenschaftliche Ansprechpartner:

    Dr. Nikoloz Sirmpilatze (Functional Imaging Unit)
    Phone: +49 (0) 551 3851-421
    Email: nsirmpilatze@dpz.eu


    Originalpublikation:

    Sirmpilatze N, Mylius J, Ortiz-Rios M, Baudewig J, Paasonen J, Golkowski D, Ranft A, Ilg R, Gröhn O, Boretius S (2022): Spatial signatures of anesthesia-induced burst-suppression differ between primates and rodents. eLife. https://doi.org/10.7554/eLife.74813


    Weitere Informationen:

    http://medien.dpz.eu/pinaccess/showpin.do?pinCode=IcIymmRR9iJj - Printable pictures
    https://www.dpz.eu/en/home/single-view/news/rhythmischer-tiefschlaf-1.html - Press release on DPZ homepage


    Bilder

    Burst-suppression in the brains of humans, long-tailed macaques, common marmosets and rats.
    Burst-suppression in the brains of humans, long-tailed macaques, common marmosets and rats.
    Nikoloz Sirmpilatze
    Deutsches Primatenzentrum GmbH

    Dr. Nikoloz Sirmpilatze is a scientist in the Functional Imaging Unit at the German Primate Center.
    Dr. Nikoloz Sirmpilatze is a scientist in the Functional Imaging Unit at the German Primate Center.
    Karin Tilch
    Deutsches Primatenzentrum GmbH


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).