idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
27.10.2022 12:50

Eine Tasche voller Wassermoleküle - wie Aktinfilamente die Zellbewegung antreiben

Johann Jarzombek Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Physiologie

    Aktinfilamente sind Proteinfasern, die das innere Skelett einer Zelle bilden. Sie unterstüten viele zelluläre Prozesse wie die Zellbewegung und sind ein wichtiger Hauptbestandteil von Muskelzellen. Forschenden um Stefan Raunser am Max-Planck-Institut für molekulare Physiologie in Dortmund ist es nun erstmals gelungen, Hunderte von Wassermolekülen im Aktinfilament sichtbar zu machen. Mit der Kryo-Elektronenmikroskopie (Kryo-EM) zeigt die Gruppe in noch nie dagewesenem Detail, wie Aktin-Proteine in einem Filament angeordnet sind, wie ATP - die Energiequelle der Zelle - in der Proteintasche sitzt und wo sich einzelne Wassermoleküle positionieren und mit ATP reagieren.

    "Wir beantworten grundlegende Fragen des Lebens, die Forschende seit mehreren Jahrzehnten zu beantworten versuchen", sagt Raunser. In eukaryotischen Zellen sind Aktin-Proteine im Überfluss vorhanden und schließen sich zu Filamenten zusammen. Ein Netzwerk dieser Filamente bildet das Zytoskelett der Zelle, das verschiedene Zellprozesse durch Bewegung steuert. So nutzen z. B. Immunzellen Aktinfilamente, um sich zu bewegen und Bakterien und Viren zu jagen. Bekannt war bisher, dass die Dynamik der Filamente durch ATP-Hydrolyse reguliert wird - die Reaktion von ATP mit Wasser, bei der eine Phosphatgruppe gespalten wird und Energie entsteht. Die molekularen Details hinter diesem Prozess blieben bisher jedoch ungeklärt.

    Zu flexibel, zu groß? – nicht für Kryo-EM
    Da Aktinfilamente zu flexibel oder zu groß für Röntgenkristallisation und Kernspinresonanz sind, kann man detaillierte Bilder der Filamente nur mit der Kryo-EM erhalten. Im Jahr 2015 nutzte Raunsers Team bereits diese Technik, um ein neuartiges dreidimensionales atomares Modell der Filamente mit einer Auflösung von 0,37 Nanometern zu erstellen. Im Jahr 2018 beschrieb seine Gruppe die drei verschiedenen Zustände, die das Aktinprotein im Filament annimmt: gebunden an ATP, gebunden an ADP in Gegenwart des gespaltenen Phosphats und gebunden an ADP nach Freisetzung des Phosphats.

    Wie sich Wassermoleküle bewegen
    In ihrer jetzigen Studie konnte das Team um Stefan Raunser einen neuen Auflösungs-Rekord aufstellen: Sie erhielten Strukturen aller drei Aktin-Zustände mit einer Auflösung von ca. 0,2 Nanometern und konnten so zuvor unsichtbare Details sichtbar machen. Die dreidimensionalen Karten zeigen nicht nur alle Aminosäureseitenketten der Proteine, sondern verraten auch, wo sich Hunderte von Wassermolekülen befinden. Durch den Vergleich dieser neuen Strukturen mit denen von isoliertem Aktinprotein konnten sie folgern, wie sich die Wassermoleküle bewegen. Bei der Polymerisation verlagern sich die Wassermoleküle in der ATP-Tasche so, dass nur ein einziges Wassermolekül vor dem ATP verbleibt, bereit, ein Phosphat anzugreifen und die Hydrolyse einzuleiten. Die durch diesen Ansatz erzielten präzisen Einblicke haben das Potential, die weitere Forschung auf diesem Gebiet voranzutreiben: "Unser hochauflösendes Modell kann Forschenden bei der Entwicklung kleiner Moleküle für die lichtmikroskopische Forschung an Geweben und letztlich für therapeutische Anwendungen unterstützen", sagt Raunser.

    Ein Türöffner!?
    Die Autoren beleuchteten auch das Schicksal des Phosphats. Bisher glaubten die Forschenden, dass es in der ATP-Tasche eine Hintertür gibt, die nach der ATP-Hydrolyse geöffnet bleibt, um den Austritt des Phosphats zu erleichtern. Die neuen Kryo-EM-Strukturen zeigen jedoch keine offene Hintertür. Daher bleibt der Mechanismus der Phosphat-Freisetzung ein Rätsel. "Wir glauben, dass es in der Tat eine Tür gibt. Diese öffnet sich aber wahrscheinlich nur kurzzeitig und schließt dann wieder", kommentiert Raunser, der nun mathematische Simulationen und zeitaufgelöste Kryo-EM-Methoden einsetzen will, um zu zeigen, wie das Phosphat austritt. Diese aufregenden Entdeckungen haben den Forschenden offensichtlich die Tür geöffnet, noch mehr Details der Prozesse zu entdecken, mit denen Aktinfilamente zur Bewegung der Zelle beitragen.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Stefan Raunser
    Direktor Abteilung Strukturbiochemie
    Max-Planck-Institut für molekulare Physiologie
    Tel.: +49 231 133 2300
    E-Mail: Stefan.Raunser@mpi-dortmund.mpg.de


    Originalpublikation:

    Oosterheert W, Klink B. U, Belyy A, Pospich S, Raunser S (2022). Structural Basis of actin filament assembly and aging. Nature. DOI: 10.1038/s41586-022-05241-8


    Weitere Informationen:

    https://www.mpi-dortmund.mpg.de/aktuelle/raunser-nature-actin-water


    Bilder

    Erstautor Wout Oosterheert vor dem Talos Arctica Cryo-Transelektronenmikroskop.
    Erstautor Wout Oosterheert vor dem Talos Arctica Cryo-Transelektronenmikroskop.

    MPI für molekulare Physiologie

    Cryo-EM Rekonstruktion von F-Aktin gebunden an Mg2+-ADP-BeF3- aufgelöst mit 2.2 Å. Zentrale Aktin-Untereinheit (blau), weitere Untereinheiten (grau), Wassermolekülen (rot), ADP (gelb)
    Cryo-EM Rekonstruktion von F-Aktin gebunden an Mg2+-ADP-BeF3- aufgelöst mit 2.2 Å. Zentrale Aktin-Un ...

    MPI für molekulare Physiologie


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).