idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.11.2022 14:45

Neues Fertigungsverfahren senkt Herstellungskosten von Glasfaser-Verbindern für die Hochleistungskommunikation

Susanne Krause Externe und interne Kommunikation
Fraunhofer-Institut für Produktionstechnologie IPT

    Moderne Hochleistungsnetzwerke in Rechen- und Datencentern übertragen gewaltige Datenmengen. Schlüsselkomponenten der optischen Übertragungsstrecke sind die sogenannten Faserkoppler, die die Glasfaser mit den Schaltkreisen der Servereinheiten verbinden. Diese komplexen Mikrooptiken zu fertigen ist aufgrund hoher Herstellungskosten bisher wirtschaftlich unattraktiv. Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelte deshalb gemeinsam mit Partnern ein Design für leistungsfähige Faserkoppler aus Glas sowie einen Fertigungsprozess, mit dem sich diese Hochleistungsoptiken in hohen Stückzahlen kostengünstig produzieren lassen.

    Unternehmen, Rechen- und Datenzentren auf der ganzen Welt haben einen enormen Bedarf an Kommunikationsnetzen mit hohen Datenübertragungsraten. Für eine 50 Gigabaud-Glasfaserverbindung mit einer Reichweite über 500 Meter, müssen die bisher gängigen multimodalen Glasfaser-Kabel gegen sogenannte monomodale Glasfaser-Kabel ausgetauscht werden. Multimodale Verbindungen übertragen große Datenmengen nur über kürzere Distanzen; monomodale Kabel hingegen können die Daten auch über längere Strecken störungsfrei transportieren.

    Die monomodalen Glasfaserleitungen sind durch sogenannte optische Faserkoppler mit den Schaltkreisen, etwa in den Rechenzentren, verbunden. Die nur wenige Kubikmillimeter großen Faserkoppler wirken unscheinbar, sind aber tatsächlich Schlüsselelemente, die bislang große fertigungstechnische und wirtschaftliche Herausforderungen mit sich bringen: Die Optiken verfügen über mikrostrukturierte Oberflächen und müssen eine hohe optische Qualität und Präzision aufweisen. Während Faserkoppler für multimodale Glasfaserverbindungen noch aus Kunststoff im Spritzgussverfahren hergestellt werden konnten, müssen Komponenten für monomodale Glasfaserverbindungen aus Glas gefertigt werden. Zur kostengünstigen Produktion der anspruchsvollen Glas-Mikrooptiken in hohen Stückzahlen gibt es jedoch bislang kein etabliertes Verfahren, sodass sie aufwändig und teuer in Einzelfertigung hergestellt werden müssen. In der Folge entfallen bis zu 50 Prozent der Herstellungskosten von Glasfaserleitungen auf die Fertigung der Faserkoppler.

    Glasfaserkoppler für die Hochleistungsdatenkommunikation

    Im kürzlich abgeschlossenen, öffentlich geförderten Forschungsprojekt »EFFICIENTlight – Effiziente Faser-PIC-Kopplung mittels Glasumformung auf Wafermaßstab« entwickelte das Fraunhofer IPT gemeinsam mit Projektpartnern eine kostengünstige leistungsfähige Kopplung für monomodale Lichtleitfasern und photonisch integrierte Schaltkreise (Photonic Integrated Circuit, PIC). Dafür entwarf das Team einen Faserkoppler, der eine geringe Signaldämpfung und ein fertigungs- und montagefreundliches Design aufweist. Hergestellt werden die Bauteile in einer vollständig neu entwickelten Fertigungskette, die die Herstellungskosten der Glasfaserkopplungen in hohen Stückzahlen deutlich senkt.

    Optimiertes Optikdesign und Auslegung von neuen Glasumformungsprozessen

    Die Forscherinnen und Forscher legten für die Fertigung der Faserkoppler verschiedene Glasumformtechnologien auf Wafer-Level neu aus und können damit in einem Arbeitsschritt gleich mehrere Optiken herstellen. Die Umformung erlaubt zudem die Herstellung komplex geformter Optiken und erweitert die Gestaltungsfreiheiten im Optikdesign. Diese Möglichkeiten schöpfte das Forscherteam aus und optimierte das Design der Koppler, beispielsweise durch die Integration mehrerer optisch-aktiver Flächen wie Linsen und Spiegel.

    Zur Fertigung des neuen Optikdesigns entwickelte das Forschungsteam mehrere Glasumformungsprozesse weiter: das Präzisionsblankpressen, bei dem Glasrohlinge direkt in einer Umformanlage erhitzt und abgeformt werden, und das kostengünstigere nicht-isotherme Blankpressen, bei dem das Material vorab außerhalb der Maschine auf die erforderliche Temperatur gebracht wird. Da die Aperturen der Mikro-Optiken nur wenige 100 µm betragen und hochgenau eingebracht werden müssen, war die Prozessentwicklung sehr anspruchsvoll.

    Testergebnisse übertreffen Erwartungen

    Um die Serientauglichkeit der Fertigungsprozesse unter Industriebedingungen nachzuweisen, erprobten die Forscherinnen und Forscher alle Prozesse mit kommerziellen Fertigungsanlagen, teilweise am Fraunhofer IPT und teilweise bei Projektpartnern. Die gefertigten Optiken montierten und testeten sie anschließend in einer anwendungsnahen Testumgebung mit eigens entwickelten Schaltkreisen. In den Versuchen zeigte sich, dass die Optiken, die mit dem neu ausgelegten isothermen Umformungsprozess auf Wafer-Level hergestellt wurden, durchweg von hervorragender Qualität waren. Auch das neue Design der Faserkoppler konnte überzeugen: Die optischen Eigenschaften übertrafen zum Teil sogar die Erwartungen des Teams.

    Aufbauend auf den positiven Ergebnissen des »EFFICIENTlight«-Projekts planen die Projektpartner, sowohl das Präzisionsblankpressen als auch die nicht-isotherme Umformung zukünftig für die kostengünstige Produktion komplexer Mikrooptiken in hoher Stückzahl noch weiterzuentwickeln.

    Förderung

    Das dreijährige Forschungsprojekt »EFFICIENTlight – Effiziente Faser-PIC-Kopplung mittels Glasumformung auf Wafermaßstab« wurde vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Programms »Photonikforschung Deutschland« gefördert.

    Projektpartner

    - Lehrstuhl für Integrierte Photonik IPH der RWTH Aachen (Koordination)
    - Fraunhofer-Institut für Produktionstechnologie IPT, Aachen
    - Aixemtec GmbH, Herzogenrath
    - aiXscale photonics UG, Köln
    - GD Optical Competence GmbH, Sinn
    - Mellanox Technologies, Ltd., Israel
    - son-x GmbH, Aachen


    Wissenschaftliche Ansprechpartner:

    Robert Michels M.Sc.
    Gruppe Optik

    Fraunhofer-Institut für Produktionstechnologie IPT
    Steinbachstr. 17
    52074 Aachen
    Telefon +49 241 8904-373
    robert.michels@ipt.fraunhofer.de
    www.ipt.fraunhofe.de


    Weitere Informationen:

    https://www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/221117-fertigungsverf...


    Bilder

    Die gefertigten Optiken wurden in einer anwendungsnahen Testumgebung getestet.
    Die gefertigten Optiken wurden in einer anwendungsnahen Testumgebung getestet.

    © Fraunhofer IPT

    Durch Glasumformung auf Wafer-Level können in einem Arbeitsschritt gleich mehrere Optiken hergestellt werden. Das Forscherteam erprobte verschiedene Umformprozesse auf Wafer-Level.
    Durch Glasumformung auf Wafer-Level können in einem Arbeitsschritt gleich mehrere Optiken hergestell ...

    © Fraunhofer IPT


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Informationstechnik, Maschinenbau, Verkehr / Transport, Werkstoffwissenschaften
    überregional
    Forschungs- / Wissenstransfer, Forschungsprojekte
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).