idw - Informationsdienst
Wissenschaft
Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.
„Diese Quantencomputer-Algorithmen sind ursprünglich in einem ganz anderen Kontext entwickelt worden. Wir haben sie hier erstmals genutzt, um Elektronendichten von Molekülen zu berechnen, insbesondere auch ihre dynamische Entwicklung nach Anregung durch einen Lichtpuls,“ sagt Annika Bande, die am HZB eine Gruppe zur theoretischen Chemie leitet. Zusammen mit Fabian Langkabel, der bei Bande promoviert, zeigte sie nun in einer Studie, wie gut dies funktioniert.
„Wir haben einen Algorithmus für einen fiktiven, völlig fehlerfreien Quantencomputer entwickelt, und ihn auf einem klassischen Server laufen lassen, der einen Quantencomputer von zehn Qbits simuliert,“ sagt Fabian Langkabel. Dabei begrenzten sie ihre Studie auf kleinere Moleküle, um die Rechnungen auch ohne echten Quantencomputer durchführen zu können und mit konventionellen Berechnungen zu vergleichen.
Sie konnten zeigen, dass auch die Quantenalgorithmen die erwarteten Ergebnisse produzierten. Im Unterschied zu konventionellen Berechnungen eignen sich die Quantenalgorithmen jedoch auch, um mit zukünftigen Quantencomputer deutlich größere Moleküle zu berechnen: „Das hat mit den Rechenzeiten zu tun. Sie steigen mit der Anzahl der Atome, aus denen das Molekül besteht“, sagt Langkabel. Während die Rechenzeit sich mit jedem zusätzlichen Atom für konventionelle Verfahren vervielfacht ist das für Quantenalgorithmen nicht der Fall, was sie sehr viel schneller macht.
Die Studie zeigt damit einen neuen Weg, um Elektronendichten und ihre „Antwort“ auf Anregungen mit Licht mit sehr hoher Orts- und Zeitauflösung vorab zu berechnen. Damit lassen sich beispielsweise ultraschnelle Zerfallsprozesse simulieren und verstehen, die auch bei Quantencomputern aus so genannten Quantenpunkten entscheidend sind. Aber auch Vorhersagen zum physikalischen oder chemischen Verhalten von Molekülen sind möglich, zum Beispiel während der Aufnahme von Licht und dem anschließenden Transfer von elektrischen Ladungen. Dies könnte die Entwicklung von Photokatalysatoren für die Produktion von grünem Wasserstoff mit Sonnenlicht erleichtern oder dabei helfen, Prozesse in den lichtempfindlichen Rezeptormolekülen im Auge zu verstehen.
Dr. Annika Bande; annika.bande@helmholtz-berlin.de
Journal of Chemical Theory and Computation (2022):
Quantum-Compute Algorithm for Exact Laser-Driven Electron Dynamics in Molecules
Fabian Langkabel, Annika Bande.
DOI: 10.1021/acs.jctc.2c00878
Hier ist am Beispiel des Moleküls Lithiumhydrid die Verschiebung von Elektrondichte vom Cyanid (rot) ...
F. Langkabel / HZB
Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler
Chemie, Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).