idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.12.2022 13:55

Using drones to monitor volcanoes: Researchers analyze volcanic gases with the help of ultra-lightweight sensor systems

Kathrin Voigt Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Composition of gases emitted by volcanoes can provide information on the possibility of imminent eruptions / Lightweight drones make investigation possible even in areas that are difficult to access

    The main gases released by volcanoes are water vapor, carbon dioxide, and sulfur dioxide. Analyzing these gases is one of the best ways of obtaining information on volcanic systems and the magmatic processes that are underway. The ratio of carbon dioxide levels to those of sulfur dioxide can even reveal the likelihood of an impending eruption. Drones are employed to carry the necessary analytical systems to the site of activity. However, because of their size, transporting the drones to their operation sites has to date required significant expense. A team headed by Professor Thorsten Hoffmann at Johannes Gutenberg University Mainz (JGU) has recently been assessing the potential for using a small, portable observation drone in remote regions. This very compact drone system can even be conveyed on foot to sites that are extremely difficult to access. In addition, it requires only minimal flight and administrative preparations for operation as an aerial observation platform.

    Eruptions can be predicted on the basis of volcanic outgassing

    Gas discharges from volcanoes mainly consist of water vapor, carbon dioxide, and sulfur dioxide. Released gas emissions are among the few chemical signals that provide evidence of the processes occurring in magmatic systems that are located deep below the surface and are thus otherwise inaccessible. For some time already, researchers have assumed that the analysis of such volatile emissions could play a central role in improving the prediction of volcanic eruptions. A particularly promising parameter when it comes to the surveillance of changes to volcanic activity is the ratio of concentration of carbon dioxide to sulfur dioxide in the released gases. In fact, alterations to this ratio have been observed immediately prior to eruptions of several volcanoes, among which was Etna. Unfortunately, the practical side of compiling a continuous time series of gas compositions represents a major challenge. Direct manual sampling by means of climbing the volcano is arduous and time-consuming, not to mention the potential dangers should an eruption suddenly occur. On the other hand, stationary monitoring equipment often does not record representative data on gas compositions, mainly due to changing wind directions.

    Measurement drones can overcome these problems and have already been used to measure the chemical characteristics of volcanic gases. In particular, the risk to volcanologists of being endangered by sudden changes in volcanic activity is significantly reduced by the greater distances involved. Moreover, drones make it possible to reach emission sources that are otherwise difficult or even impossible to access, such as fumaroles in steep, slippery terrain or older parts of the plume that are typically located in downwind areas and at higher altitudes. Only larger drones have so far been employed for the monitoring of volcanoes and, of course, this has proved problematic in view of the remoteness of the regions in which most volcanoes are to be found. "It is for this reason that small, easily transportable drones are an essential prerequisite if we want to get to isolated or difficult-to-access volcanic sites and suitably track the activity there," said Niklas Karbach, lead author of the corresponding paper that has recently been published in Scientific Reports.

    Small drone system that can be carried in a backpack

    In collaboration with volcanologist Dr. Nicole Bobrowski of Heidelberg University and the National Institute of Geophysics and Volcanology (INGV) in Catania, the Mainz-based research team has been trialing a tiny commercial drone weighing less than 900 grams equipped with miniaturized, lightweight sensors. This combination that weighs no more than a bottle of mineral water could be transported easily to the scene in a backpack. But it is not just the weight of the drone that is crucial. "We need to obtain real-time data on sulfur dioxide levels as this lets us know when we are actually in contact with the volcanic plume, something that readily moves over time in response to atmospheric factors. The localization of a plume by visual means alone from a distance of several kilometers is practically impossible," added Professor Hoffmann, head of the JGU group.

    The project is receiving financial support from TeMaS – Terrestrial Magmatic Systems, one of eight High-potential Research Areas at JGU. The aim of TeMaS, which is a collaboration of researchers from Mainz, Frankfurt, Heidelberg and Munich, is to understand the connections between the magmatic processes in the Earth's mantle and the atmosphere by combining the expertise from disciplines as diverse as experimental petrology and atmospheric chemistry.

    Images:
    https://download.uni-mainz.de/presse/09_chemie_analytische_vulkane_drohnen_01.jp...
    The research drone in action on the island of Vulcano at the southern boundary of the Aeolian Islands
    photo/©: Hoffmann group

    https://download.uni-mainz.de/presse/09_chemie_analytische_vulkane_drohnen_02.jp...
    Niklas Karbach taking test measurements in a fumarole field (Vulcano, Italian Aeolian Islands)
    photo/©: Hoffmann group

    https://download.uni-mainz.de/presse/09_chemie_analytische_vulkane_drohnen_03.jp...
    The Little-RAVEN observation drone during a test flight in Mainz
    photo/©: Hoffmann group

    https://download.uni-mainz.de/presse/09_chemie_analytische_vulkane_drohnen_04.jp...
    Volcanic emissions influencing the Earth/atmosphere system: Sulfur and halogen compounds play a major role here.
    ill./©: Hoffmann group

    Related links:
    https://www.blogs.uni-mainz.de/fb09-ac-hoffmann-eng/ – Research group of Professor Thorsten Hoffmann at the JGU Department of Chemistry

    Read more:
    https://www.uni-mainz.de/presse/aktuell/16698_ENG_HTML.php – press release "Climate whiplash increased wildfires on California's west coast about 8,000 years ago" (8 Dec. 2022) ;
    https://www.uni-mainz.de/presse/aktuell/16446_ENG_HTML.php – press release "Iodine accelerates formation of cloud condensation nuclei in the atmosphere" (2 Nov. 2022) ;
    https://www.uni-mainz.de/presse/aktuell/11991_ENG_HTML.php – press release "Reversed ratio of chiral volatile organic compounds over the Amazon rainforest reveal insects as unexplored important source of forest emissions" (27 Aug. 2020) ;
    https://www.uni-mainz.de/presse/aktuell/10593_ENG_HTML.php – press release "Scientists at Mainz University study ice cores as a climate archive" (20 Dec. 2019) ;
    https://www.uni-mainz.de/presse/aktuell/9337_ENG_HTML.php – press release "Reinhart Koselleck Project funding for research into the growth of atmospheric nanoparticles" (1 Oct. 2019) ;
    https://www.uni-mainz.de/presse/15768_ENG_HTML.php – press release "International research group shows that the aging of organic aerosols is caused by OH radicals" (5 Oct. 2012)


    Wissenschaftliche Ansprechpartner:

    Professor Dr. Thorsten Hoffmann
    Department of Chemistry
    Johannes Gutenberg University Mainz
    55099 Mainz, GERMANY
    phone: +49 6131 39-25716
    fax: +49 6131 39-25336
    e-mail: t.hoffmann@uni-mainz.de
    https://www.blogs.uni-mainz.de/fb09-ac-hoffmann-eng/head-of-the-group/


    Originalpublikation:

    N. Karbach, N. Bobrowski, T. Hoffmann, Observing volcanoes with drones: studies of volcanic plume chemistry with ultralight sensor systems, Scientific Reports 12: 17890, 25 October 2022
    DOI: 10.1038/s41598-022-21935-5
    https://www.nature.com/articles/s41598-022-21935-5


    Bilder

    The research drone in action on the island of Vulcano at the southern boundary of the Aeolian Islands
    The research drone in action on the island of Vulcano at the southern boundary of the Aeolian Island ...

    photo/©: Hoffmann group


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Chemie, Geowissenschaften, Maschinenbau, Meer / Klima, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).