idw - Informationsdienst
Wissenschaft
Bisher war es mit Nanopartikeln als Katalysatoren für grünen Wasserstoff wie mit Ruderern in einem Achter: Man konnte nur die durchschnittliche Leistung messen, nicht aber herausfinden, wer der Beste ist. Eine neue Methode, die die Gruppe um Prof. Dr. Kristina Tschulik, Leiterin des Lehrstuhls für Elektrochemie und nanoskalige Materialien an der Ruhr-Universität Bochum, entwickelt hat, ändert das. Sie konnte in Kooperation mit Forscherinnen der Universität Duisburg-Essen belegen, dass würfelförmige Nanopartikel effizienter funktionieren als kugelförmige. Das ebnet den Weg zum gezielten Design günstiger und effizienter Katalysatoren für grünen Wasserstoff.
Die Forschenden berichten in der Zeitschrift Advanced Functional Materials vom 3. Januar 2023.
Elektrolyse konkurrenzfähig machen
Die Welt muss den CO2-Ausstoß senken, um dem Klimawandel zu begegnen. Dazu soll der heute häufig genutzte sogenannte graue Wasserstoff, der aus Erdöl und Erdgas gewonnen wird, durch grünen Wasserstoff ersetzt werden, der aus erneuerbaren Quellen stammt. Grüner Wasserstoff kann durch Elektrolyse gewonnen werden, wobei Wasser mithilfe von Strom in Wasserstoff und Sauerstoff gespalten wird. Allerdings müssen noch einige Herausforderungen gemeistert werden, um die Elektrolyse konkurrenzfähig zu machen. Aktuell ist die Effizienz des Wasserspaltungsprozesses begrenzt, und es fehlen leistungsfähige, langlebige und kostengünstige Katalysatoren dafür. „Die derzeit aktivsten Elektrokatalysatoren basieren auf den seltenen und teuren Edelmetallen Iridium, Ruthenium oder Platin“, so Kristina Tschulik. „In der Wissenschaft haben wir daher die Aufgabe, neue hochaktive, edelmetallfreie Elektrokatalysatoren zu entwickeln.“
Ihre Gruppe untersucht Katalysatoren in Form von unedlen Metalloxid-Nanopartikeln – eine Million Mal kleiner als ein menschliches Haar. Industriell hergestellt variieren sie in Form, Größe und chemischer Zusammensetzung. „In Messungen werden sogenannte Katalysatortinten untersucht, in denen Milliarden von Partikeln mit Bindern und Additiven vermischt sind“, erklärt Kristina Tschulik. So kann man nur eine durchschnittliche Leistung messen, nicht aber die Aktivität einzelner Partikel – und auf die kommt es an. „Wenn man wüsste, welche Partikelform beziehungsweise Kristallfacette – das sind die Flächen, die nach außen zeigen – besonders aktiv ist, könnte man gezielt Partikel mit genau dieser Form herstellen“, sagt Dr. Hatem Amin, wissenschaftlicher Mitarbeiter in der analytischen Chemie an der Ruhr-Universität Bochum.
Sieger des Rennens unter den Nanopartikeln
Die Arbeitsgruppe hat eine Methode entwickelt, mit der einzelne Partikel direkt in Lösung analysiert werden können. Dadurch kann man die Aktivität von verschiedenen Nanomaterialien miteinander vergleichen und somit den Einfluss von Partikeleigenschaften wie deren Form und Zusammensetzung auf die Wasserspaltung aufklären. „Unsere Ergebnisse zeigen, dass Kobaltoxid-Partikel in Form einzelner Würfel aktiver sind als Kugeln, die stets mehrere Facetten aufweisen.
Theorie bestätigt das Experiment
Diese experimentelle Erkenntnis der Bochumer Gruppe konnte im Rahmen des Sonderforschungbereichs/Transregios 247 von den Kooperationspartnern um Prof. Dr. Rossitza Pentcheva von der Universität Duisburg-Essen bestätigt werden. Deren theoretische Untersuchungen weisen auf den Wechsel der aktiven Katalysatorbereiche hin: von Kobaltatomen, die oktaedrisch von Sauerstoffatomen umgeben sind, hin zu tetraedrisch umgebenen Kobaltatomen. „Die Erkenntnisse über die Beziehung zwischen Partikelform und Aktivität legen die Basis für das wissensbasierte Design geeigneter Katalysatormaterialien und damit für die Transformation unserer fossilen Energie- und Chemieindustrie hin zu einer Kreislaufwirtschaft auf Basis erneuerbarer Energieträger und hochaktiver, langlebiger Katalysatoren“, so Kristina Tschulik.
Förderung
Die Arbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft (Sonderforschungsbereich Transregio 247, Förderkennzeichen 388390466, Exzellenzcluster EXC-2033 – 390677874-RESOLV), der Europäische Union (ERC-Projekt MITICAT – GA 949724 und Marie-Skłodowska-Curie-Maßnahme 801459-FP-RESOMUS sowie 812398-Projekt SENTINEL), dem China Scholarship Council und der Max-Planck-Gesellschaft.
Prof. Dr. Kristina Tschulik
Lehrstuhl für Analytische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 29433
E-Mail: nanoec@rub.de
Zhibin Liu, Hatem M. A. Amin, Yuman Peng, Manuel Corva, Rossitza Pentcheva, Kristina Tschulik: Facet-Dependent Intrinsic Activity of Single Co3O4 Nanoparticles for Oxygen Evolution Reaction, in: Advanced Functional Materials, 2022, DOI: 10.1002/adfm.202370006, https://onlinelibrary.wiley.com/doi/10.1002/adfm.202370006
Kristina Tschulik (links) und Hatem Amin befassen sich mit der Untersuchung von Nanopartikel als Ka ...
© RUB, Marquard
Merkmale dieser Pressemitteilung:
Journalisten
Chemie, Energie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).