idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
31.07.2023 12:41

QuNET initiative: One step closer to highly secure quantum communication

Desiree Haak Press & Public Relation
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

    Researchers from Jena, Berlin, Erlangen-Nuremberg and Wessling have successfully distributed quantum keys between two points using a combination of free-space and fiber links under everyday conditions. On a heterogeneous test bed in Jena, they achieved key rates in the kilobit range per second in daylight. The experiment was implemented as part of the QuNET initiative, a pilot project funded by the German Federal Ministry of Education and Research (BMBF) to develop highly secure communication systems based on quantum technologies.

    The communication of the future is to become more secure with the help of light particles. This is the goal of the QuNET initiative by the BMBF. The initiative's partners - the Max Planck Institute for the Physics of Light, Friedrich Alexander University Erlangen-Nuremberg, the DLR Institute of Communications and Navigation, and the two Fraunhofer Institutes for Applied Optics and Precision Engineering IOF and the Heinrich Hertz Institute HHI - have now taken an important step toward quantum-safe networks: With a key experiment, they have shown how multiple quantum-secured point-to-point links can be realized and combined for future scalable quantum-safe networks. They not only combined transmissions of quantum keys via free-space and fiber links, but also achieved transmission rates in the kilobit range per second in daylight.

    "One goal of the key experiment was to demonstrate the distribution of quantum keys in heterogeneous ad-hoc links in daylight," explains Dr. Thorsten Goebel, coordinator in the QuNET Office at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF. "Heterogeneous in this case means that we distribute quantum keys between two points with a combination of free-space and fiber links to bridge fiber gaps. And all of this with an ad-hoc character, i.e., establishing the connection as quickly as possible."

    Test bed over two kilometers in the urban area of Jena

    In this specific case, the researchers established a quantum-secured connection on a nearly two-kilometer-long test track in Jena. The quantum key distribution was implemented in two stages: The journey began on the roof of the Jena public utility company. There is a green container with a telescope for sending quantum keys in its belly. From here, light particles, which form the basis for generating a highly secure quantum key, first fly over 1.7 kilometers as the crow flies to the Beutenberg Campus Jena. There, they are picked up by a receiving station in another container on the grounds of the Fraunhofer Institute. From this intermediate node, the signal is fed into a fiber link and forwarded via 300 meters of fiber to a building adjacent to the institute. There, a quantum key is finally generated from the measurements on the light particles.

    Even in the case of longer transmission distances i.e., when a direct distribution of quantum keys is not possible, the researchers have taken precautions: By suitably combining keys at trusted intermediate stations along these longer distances, the key distribution becomes possible over even greater distances.

    Mobile quantum link allows bridging of fiber gaps

    "Our key experiment thus demonstrates how the combination of multiple links can succeed in bridging fiber gaps, i.e., distances where the lack of lines makes fully fiber-based transmission impossible," Dr. Goebel continues. "An often-cited example here would be a summit in rural regions with patchy fiber infrastructure." But natural boundaries, such as bridging a river, are also a conceivable application scenario for a point-to-point connection between transmitter and receiver that can be established for a short time.

    Another important aspect of the experiment is its mobile character. The two quantum containers used by the researchers, also called QuBUSes, are basically transportable. They could, for example, be taken to any location by a vehicle and could establish a quantum-secured connection there as needed. In this way, quantum communication can be implemented at the most diverse locations.

    Researchers achieve key generation rates in the kilobit range

    With their experiment, the researchers also achieved key generation rates in the kilobit range per second, even in direct midday sunlight. The researchers thus also achieved an important criterion for practical use, because intense solar radiation usually impairs the exchange of quantum-based keys. In many experiments, the quantum keys were therefore distributed at night and pre-stored for daytime communication. With the development of special filters, daytime key generation is now possible.

    In addition, one aspect of this experiment was the demonstration of hybrid quantum key distribution. This involves the simultaneous implementation of different protocols for key distribution, which was thus able to demonstrate the agility of the developed infrastructure, in particular the QuBUS platform, in terms of the protocols used. This is important, since the development of quantum key distribution still offers many possibilities for expansion, and these should not be restricted by the infrastructure used. Thus, the developed infrastructure is also future-proof and can be used for any protocols of quantum key distribution without major adaptations.

    For this purpose, protocols for quantum key distribution were also tested, which measure the electric fields instead of individual light particles. The researchers were able to show that this approach, which is very close to the technology used in classical telecommunications, is suitable for quantum key distribution without additional filters even in the case of fluctuating transmission channels of the free-space link in daylight.

    First quantum-secured videoconference already realized in 2021

    The experiment in Jena is the second public demonstration of technology development in the QuNET initiative: QuNET researchers had already successfully implemented a quantum-secured videoconference between two federal agencies in August 2021. At that time, a connection between the Federal Ministry of Education and Research and the Federal Office for Information Security (BSI) was implemented.

    Further information

    Under the following link you will find the complete press release including further information (e.g. a FAQ on the QuNET initiative) as well as printable press images: https://www.iof.fraunhofer.de/en/pressrelease/2023/QuNET-Keyexperiment-2023.html


    Wissenschaftliche Ansprechpartner:

    Dr. Thorsten Goebel
    Coordination QuNET Office at Fraunhofer IOF

    Phone: +49 (0) 3641 807 - 406
    E-mail: thorsten.goebel@iof.fraunhofer.de / qunet-office@iof.fraunhofer.de


    Weitere Informationen:

    https://www.iof.fraunhofer.de/en/pressrelease/2023/QuNET-Keyexperiment-2023.html


    Bilder

    The outdoor area of the Fraunhofer IOF with drawn free-space link (blue line) as well as fiber link (red line) to the neighboring research building.
    The outdoor area of the Fraunhofer IOF with drawn free-space link (blue line) as well as fiber link ...

    © Fraunhofer IOF

    Collage showing the free-space link: on the left the perspective from the roof of the Jena public utility company in the direction of the Fraunhofer IOF, on the right the opposite viewing direction.
    Collage showing the free-space link: on the left the perspective from the roof of the Jena public ut ...

    © QuNET


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Informationstechnik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).