idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.09.2023 16:05

Wie innere Uhren den Fettstoffwechsel steuern

Gunnar Bartsch Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Bei der Taufliege Drosophila steuern innere Uhren auch den Fettstoffwechsel. Das zeigt eine neue Studie eines Forschungsteams der Universität Würzburg. Die Erkenntnisse könnten auch für den Menschen relevant sein.

    Viel ist darüber bekannt, wie der moderne Lebensstil des Menschen dazu beiträgt, Störungen im Stoffwechsel und Krankheiten auszulösen. Unregelmäßige Mahlzeiten, die Nahrungsaufnahme spät abends oder nachts und keine längeren Phasen der Abstinenz gelten inzwischen als wesentliche Faktoren für die Entwicklung des sogenannten „Metabolischen Syndroms“ – eines Krankheitsbilds, das unter anderem durch Fettleibigkeit und Bluthochdruck, einen erhöhten Blutzucker und eine Fettstoffwechselstörung gekennzeichnet ist. Die dafür verantwortlichen Mechanismen sind bislang allerdings nur unzureichend verstanden.

    Das Wissen über einen gestörten Stoffwechsel vertiefen

    Eine neue Studie von Wissenschaftlerinnen und Wissenschaftlern am Biozentrum der Julius-Maximilians-Universität Würzburg (JMU) könnte nun dazu beitragen, das Wissen über die gestörten Stoffwechselvorgänge zu vertiefen. In der Arbeit, die jetzt in der Fachzeitschrift Journal of Lipid Research erschienen ist, hat das Team untersucht, inwieweit innere Uhren den Fettstoffwechseln bei der Taufliege Drosophila steuern.

    Verantwortlich für diese Studie waren Professor Christian Wegener vom Lehrstuhl für Neurobiologie und Genetik der JMU und Dr. Agnes Fekete, Managerin der Metabolomics Core Unit am Lehrstuhl für Pharmazeutische Biologie.

    „Lipide, also Fette, sind Makro-Nährstoffe, die im Organismus beispielsweise als Bausteine für biologische Membranen, als Signalstoffe und als langfristige Energiespeicher dienen. Um ihre Zielzellen zu erreichen, müssen sie nach der Nahrungsaufnahme aus dem Darm oder bei der Mobilisierung aus den Fettspeichern über den Blutkreislauf transportiert werden“, beschreibt Agnes Fekete den Hintergrund der Studie.

    Dieser „Kreislauf der Lipide“ könne allerdings durch den modernen Lebensstil gestört werden, wenn Schichtarbeit, unregelmäßige Essenszeiten und die permanente Verfügbarkeit von Nahrung nicht mit der Rhythmik übereinstimmen, die vom Tag-Nacht-Wechsel und damit synchronisierten inneren Uhren vorgegeben wird.

    Eine innere Uhr stimmt den Lipidtransport auf die Siesta ab

    Das Team um Wegener und Fekete hat deshalb am Beispiel der Taufliege untersucht, welchen regelmäßigen Schwankungen der Fettstoffwechsel bei diesem Insekt unterliegt, welche Rolle innere Uhren dabei spielen und wie sich Faktoren wie Licht, Nahrungsaufnahme und Nahrungszusammensetzung darauf auswirken. Ihr spezieller Blick galt dabei der sogenannten Hämolymphe – dem Analog zum Blutkreislauf des Menschen – und den darin transportieren Fettmolekülen.

    Das zentrale Ergebnis fasst Wegener so zusammen: „Unsere Daten deuten darauf hin, dass die innere Uhr die täglichen Oszillationen der Transportlipide in der Hämolymphe auf die Ruhezeiten der Taufliege, die sogenannte anabole Siesta-Phase, abstimmt. Dabei zeigt sich jedoch ein starker Einfluss des Lichts auf den Verlauf und die Stärke dieser Oszillationen“, so der Neurobiologe.

    Zum Einsatz kamen im Rahmen dieser Studie sowohl normale, gesunde Taufliegen, als auch Exemplare, bei denen die innere Uhr genetisch ausgeschaltet war. Diese wurden unter unterschiedlichen Lichtverhältnissen gehalten – mal in einem regelmäßigen Hell-Dunkel-Rhythmus, mal in konstanter Dunkelheit. Zusätzlich erhielten sie unterschiedliche „Diäten“ – von einem reinen Zuckermedium bis zum Standardmedium, das sämtliche Nährstoffe in reichlicher Menge enthielt.

    Deutliches Indiz für eine von inneren Uhren gesteuerte Oszillation

    Über die Hämolymphe kontrollierte das Team regelmäßig, in welcher Konzentration die Fliege bestimmte Lipide durch ihren Organismus transportierte. Dabei zeigten sich eindeutige Muster: Bei „gesunden“ Fliegen beispielsweise, die in einem Hell-Dunkel-Zyklus auf einem reinen Zuckermedium gehalten wurden, war die Konzentration der Lipide speziell zu Beginn und am Ende der Lichtphase hoch. Unter konstant dunklen Bedingungen zeigte sich nur noch ein Anstieg, immer in der Mitte des „subjektiven“ Tages. Bei Fliegen ohne funktionierende innere Uhr zeigten sich keine solche regelmäßigen Kurven.

    Weniger deutlich ausgeprägt waren diese Kurven auch dann, wenn die Fliegen nicht nur Zucker, sondern eine quasi vollwertige Nahrung bekamen. In diesem Fall waren die rhythmischen Veränderungen der Hämolymph-Fettwerte stark abgeschwächt. Dass die Lipidkonzentrationen bei einer zeitlich begrenzten Fütterung unabhängig vom Zeitpunkt der Nahrungsaufnahme einmal in der Mitte der Lichtphase ihren Höhepunkt erreichten, werten die Wissenschaftlerinnen und Wissenschaftler als ein „deutliches Indiz für eine von inneren Uhren gesteuerte Oszillation“.

    Ansatzpunkt für ein besseres Verständnis beim Menschen

    Natürlich: Diese Vorgänge bei Drosophila unterscheiden sich in einigen Aspekten von denen beim Menschen oder bei anderen Säugetieren. Trotzdem ist das Team um Wegener und Fekete davon überzeugt, dass seine Arbeit als Ausgangspunkt dienen kann, um zugrundeliegende allgemeine Mechanismen mit den für Drosophila vorhandenen genetischen Werkzeugen detailliert zu untersuchen – und damit längerfristig auch einen Ansatzpunkt für das Verständnis der Prozesse und ihrer krankhaften Veränderungen beim Menschen bietet.

    In einem nächsten Schritt wollen die Wissenschaftlerinnen und Wissenschaftler nun untersuchen, welche Rolle die innere Uhr im Darm und im Fettkörper – analog zu Leber und Fettgewebe beim Menschen – für die Rhythmizität spielen. Dafür wollen sie gezielt nur diese sogenannten peripheren Uhren genetisch ausschalten beziehungsweise gegenüber den anderen Körperuhren desynchronisieren. „Das wäre ein Modell, mit dem sich die Auswirkungen der Desynchronisation der Körperuhren beispielsweise durch eine nächtliche Nahrungsaufnahme im Tiermodell untersuchen lassen“, so Christian Wegener.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Christian Wegener, Lehrstuhl für Neurobiologie und Genetik, T: +49 931 31-85380, christian.wegener@biozentrum.uni-wuerzburg.de
    Dr. Agnes Fekete, Lehrstuhl für Pharmazeutische Biologie, T: +49 931 31-84223, agnes.fekete@uni-wuerzburg.de


    Originalpublikation:

    The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition. Kelechi M. Amatobi, Ayten Gizem Ozbek-Unal, Stefan Schäbler, Peter Deppisch, Charlotte Helfrich-Förster, Martin J. Mueller, Christian Wegener, Agnes Fekete. Journal of Lipid Research, https://doi.org/10.1016/j.jlr.2023.100417.


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).