idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.10.2023 11:43

KI erkennt Hautkrebs-Metastasen in Lymphknoten – Dermatologe des UKB erhält DGDC Publikationspreis 2023

Dr. Inka Väth Kommunikation und Medien
Universitätsklinikum Bonn

    Privatdozent Dr. Philipp Jansen, Oberarzt der Klinik für Dermatoonkologie und Phlebologie am Universitätsklinikum Bonn (UKB), wurde jetzt von der der deutschen Gesellschaft für Dermatochirurgie (DGDC) der Publikationspreis 2023 verliehen. In Rahmen einer multizentrischen Studie entwickelte der Dermatologe erfolgreich eine KI-basierte Methode zur Erkennung von Melanom-Metastasen in Lymphknoten-Schnitten. Dies neuen Erkenntnisse wurden bereits in der Fachzeitschrift „European Journal of Cancer“ veröffentlicht.

    Bei über die Lymphbahnen streuendem schwarzen Hautkrebs ist damit zu rechnen, dass sich Tumorzellen zuerst im nächstgelegenen Lymphknoten ansiedeln. Die operative Entnahme des so genannten Sentinel-Lymphknoten (SNL), auch Schildwächterlymphknoten genannt, mit anschließender histologischer Untersuchung ist daher ein anerkanntes diagnostisches Verfahren, um eine lymphogene Metastasierung bei Hautkrebspatienten beurteilen zu können. Sentinel-Lymphknoten werden für die histologische Analyse standardisiert aufgearbeitet, sodass in Abhängigkeit von der Lymphknotengröße und der Anzahl verschiedener immunhistochemischen Färbungen zumeist zwischen sieben bis zehn Gewebeschnitte pro Schildwächterlymphknoten vorliegen. „Da einzelnen Patienten mehr als ein Sentinel-L(PD)ymphknoten entnommen wird, ist die histologische Auswertung und im Besonderen die Detektion von Mikrometastasen in dieser Vielzahl der Gewebeschnitte für den Pathologen sehr zeitaufwändig“, sagt PD Dr. Jansen von der Klinik für Dermatoonkologie und Phlebologie am UKB, der auch an der Universität Bonn forscht. Der Dermatologe sieht in der Verwendung von künstlicher Intelligenz (KI) ein Lösungspotentia.

    KI beschleunigt die Diagnose und erkennt auch kleinste Metastasen

    Im Bereich der histologischen Analyse in der Dermatologie existieren bisher keine zertifizierten KI-basierten Algorithmen, die zur Diagnosestellung zugelassen sind. In diesem multizentrischen Kooperationsprojekt mit dem Universitätsklinikum Essen und der Universität Bremen wurde nun erstmalig ein Deep-Learning-Verfahren auf histologischen Gewebeschnitten von Sentinel-Lymphknoten aus der klinischen Routine etabliert. „Wir haben den Algorithmus so trainiert, dass er potenzielle Melanommetastasen für die weitere Untersuchung durch Pathologen hervorhebt, ohne dabei auf zusätzliche immunhistochemische Färbungen angewiesen zu sein“, sagt Jansen. Das Forschungsteam war so in der Lage, das Vorhandensein von Metastasen auf einzelnen Gewebeschnitten mit einer Empfindlichkeit von 98,57 Prozent. bei zwei Testkohorten aus verschiedenen Laboren zu erkennen. Sie konnten Tumorablagerungen bis zu 0,1 Millimeter genau identifizieren und Metastasen durch automatische Messung ihres Durchmessers in die Gruppen „0,1 bis 1,0 Millimeter“ und „Größer als 1 Millimeter“ einteilen.

    Der Nachweis von Tumorzellen beziehungsweise deren Fehlen in Sentinel-Lymphknoten (LNS) sowie deren Klassifizierung erlauben Aussagen über die Prognose der Erkrankung und sind die Basis zur Entscheidung für weitere Therapieoptionen. „Unsere Ergebnisse zeigen, dass die KI-basierte SLN-Melanom-Metastasenerkennung ein großes Potenzial hat und zu einem routinemäßig eingesetzten Hilfsmittel für Pathologen werden könnte“, sagt Jansen. „Unsere aktuelle Studie konzentrierte sich auf die Bewertung etablierter Parameter. Künftige größere KI-basierte Studien könnten jedoch neue Biomarker identifizieren, die die SLN-basierten prognostischen und therapeutischen Vorhersagen für betroffene Patienten weiter verbessern könnten.“

    Publikation:
    Philipp Jansen et al.; Deep learning detection of melanoma metastases in lymph nodes, European Journal of Cancer; DOI: https://doi.org/10.1016/j.ejca.2023.04.023
    https://www.sciencedirect.com/science/article/abs/pii/S0959804923002241

    Pressekontakt:
    Dr. Inka Väth
    stellv. Pressesprecherin am Universitätsklinikum Bonn (UKB)
    Stabsstelle Kommunikation und Medien am Universitätsklinikum Bonn
    Telefon: (+49) 228 287-10596
    E-Mail: inka.vaeth@ukbonn.de

    Zum Universitätsklinikum Bonn:
    Im UKB werden pro Jahr etwa 500.000 Patient*innen betreut, es sind ca. 9.000 Mitarbeiter*innen beschäftigt und die Bilanzsumme beträgt 1,6 Mrd. Euro. Neben den über 3.300 Medizin- und Zahnmedizin-Studierenden werden pro Jahr weitere 585 Personen in zahlreichen Gesundheitsberufen ausgebildet. Das UKB steht im Wissenschafts-Ranking sowie in der Focus-Klinikliste auf Platz 1 unter den Universitätsklinika (UK) in NRW und weist den dritthöchsten Case Mix Index (Fallschweregrad) in Deutschland auf. Das F.A.Z.-Institut hat das UKB 2022 und 2023 als Deutschland begehrtesten Arbeitgeber und Ausbildungs-Champion unter den öffentlichen Krankenhäusern in Deutschland ausgezeichnet.


    Originalpublikation:

    Philipp Jansen et al.; Deep learning detection of melanoma metastases in lymph nodes, European Journal of Cancer; DOI: https://doi.org/10.1016/j.ejca.2023.04.023


    Bilder

    Dermatologe Privatdozent Dr. Philipp Jansen des UKB erhält Publikationspreis 2023 der deutschen Gesellschaft für Dermatochirurgie (DGDC)
    Dermatologe Privatdozent Dr. Philipp Jansen des UKB erhält Publikationspreis 2023 der deutschen Gese ...

    Universitätsklinikum Bonn (UKB)


    Merkmale dieser Pressemitteilung:
    Journalisten
    Medizin
    überregional
    Forschungsergebnisse, Personalia
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).