idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
09.01.2024 11:31

Der Stein, der Wolken macht

Dr. Florian Aigner PR und Marketing
Technische Universität Wien

    Feldspat kommt im Gestein sehr häufig vor. In Form von Partikeln trägt das Mineral extrem effizient zur Wolkenbildung bei. An der TU Wien fand man nun heraus, was dabei passiert

    Feldspat ist ein ganz gewöhnliches, unscheinbares Mineral, das ungefähr die Hälfte der Erdkruste ausmacht – doch in unserer Atmosphäre spielt Feldspat eine überraschend wichtige Rolle. Feines Feldspat-Mehl, das durch die Luft geweht wird, hat nämlich einen entscheidenden Einfluss auf die Bildung von Eiswolken. An Partikeln aus Feldspat können sich Wassermoleküle viel besser anlagern als an anderen Partikeln. So werden winzige Feldspat-Teilchen zu hervorragenden Nukleationskeimen, an denen Wassermoleküle klebenbleiben und gefrieren, sodass schließlich eine Wolke am Himmel entsteht.

    Warum gerade Feldspat diese bemerkenswerte Fähigkeit hat, Wasser so effektiv an sich zu binden und dadurch Wolkenbildung zu ermöglichen, war bisher nicht klar. Mit einem hochsensitiven Rasterkraftmikroskop konnte man an der TU Wien nun zeigen: Die ganz spezielle Geometrie der Feldspat-Oberfläche bietet den perfekten Ankerpunkt für OH-Gruppen aus Wasserstoff und Sauerstoff – und dann in weiterer Folge für Wasser.

    Bilder mit atomarer Auflösung

    „Es gab mehrere Ideen, warum Feldspat ein derart effektiver Nuklationskeim ist“, sagt Prof. Ulrike Diebold vom Institut für Angewandte Physik der TU Wien, die das Projekt leitete. „Es könnte an Kalium-Atomen liegen, die im Feldspat enthalten sind, oder etwa auch an bestimmten Defekten seiner Struktur.“

    Um diese Frage zu untersuchen, setzte man ein Rasterkraftmikroskop ein. Punkt für Punkt wird dort die Oberfläche des Kristalls mit einer feinen Spitze abgetastet. Aus der Kraft, die zwischen Spitze und Kristallprobe auftritt, kann man schließen, welche Atome sich an dieser Stelle befinden. So erhält man ein Bild mit atomarer Auflösung.

    „Wir brachten also ein Stück Feldspat in die Vakuumkammer des Mikroskops ein und spalteten es in zwei Hälften, um eine unversehrte, saubere Feldspat-Oberfläche zu bekommen“, sagt Giada Franceschi, die Erstautorin der aktuellen Arbeit. „Dabei erlebten wir eine Überraschung: Die Bilder der Oberfläche sahen völlig anders aus, als gängige Theorien das vorhergesagt hatten.“

    Eine Hydroxylschicht als optimale Verbindung

    Die Ursache dafür war schnell gefunden: Wie sich zeigte, lag es an winzigen Wassereinschlüssen im Gestein. Wenn man den Stein auseinanderbricht, wird ein wenig Wasserdampf frei. Dieser lagert sich an der frisch gespaltenen Oberfläche an. Die Wassermoleküle brechen dabei auseinander und machen OH Gruppen. „Man sieht unter dem Mikroskop also gar nicht die Feldspat-Oberfläche selbst, sondern eine von Hydroxylgruppen bedeckte Oberfläche“, erklärt Giada Franceschi. „Auch in der Natur wird die Feldspat-Oberfläche mit einer solchen Hydroxylschicht bedeckt.“

    Aufgrund der Geometrie des Feldspat-Kristalls sind diese Hydroxylgruppen so positioniert, dass sie sich perfekt als Ankerpunkte für Wassermoleküle eignen. So wie Klemmbausteine, die ineinander klicken, können Wassermoleküle an den Hydroxylgruppen andocken. Die Hydroxylschicht bildet somit die perfekte Verbindung zwischen Feldspat und dem Wasser, das sich als Eis anlagert. „Die Bindung wird sehr leicht und sehr schnell hergestellt, und sie ist auch sehr stabil“, sagt Ulrike Diebold. „Um die Hydroxylschicht vom Feldspat wieder zu entfernen, müsste man ihn sehr hoch erhitzen.“ Auch Computersimulationen unterstützten diesen Befund.

    Die Ergebnisse liefern Aufschluss darüber, warum Kristalle sich in unserer Atmosphäre besonders gut als wolkenbildende Nukleationskeime eignen – auch angesichts des Klimawandels ist es wichtig, die Physik der Wolkenbildung noch besser zu verstehen. Und manchmal – so zeigt das Forschungsprojekt an der TU Wien – muss man dafür tief in die Welt der Atome blicken.


    Wissenschaftliche Ansprechpartner:

    Dr. Giada Franceschi
    Institut für Angewandte Physik
    Technische Universität Wien
    Wiedner Hauptstraße 8-10, 1040 Wien
    +43 1 58801 13466
    giada.franceschi@tuwien.ac.at

    Prof. Ulrike Diebold
    Institut für Angewandte Physik
    Technische Universität Wien
    Wiedner Hauptstraße 8-10, 1040 Wien
    +43 1 58801 13425
    ulrike.diebold@tuwien.ac.at


    Originalpublikation:

    G. Franceschi et al., How Water Binds to Microcline Feldspar (001), J. Phys. Chem. Lett. 2024, 15, 15–22.
    https://pubs.acs.org/doi/10.1021/acs.jpclett.3c03235


    Bilder

    Florian Mittendorfer, Giada Franceschi, Michael Schmid und Andrea Conti (v.l.n.r.)
    Florian Mittendorfer, Giada Franceschi, Michael Schmid und Andrea Conti (v.l.n.r.)
    TU Wien
    TU Wien

    Die atomare Struktur des Feldspats führt dazu, dass er extrem aktiv als Nukleationskeim für Wolken fungieren kann.
    Die atomare Struktur des Feldspats führt dazu, dass er extrem aktiv als Nukleationskeim für Wolken f ...
    TU Wien
    TU Wien


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Chemie, Meer / Klima, Physik / Astronomie, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).