idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.03.2024 16:00

Neue Synapsen-Art durch räumliche Proteomik entdeckt

Tamara Bäßler Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie

    Forschende um Ralf Jungmann am Max-Planck-Institut (MPI) für Biochemie und der Ludwig-Maximilians-Universität (LMU) München entwickelten in Zusammenarbeit mit Eugenio F. Fornasiero und Felipe Opazo, beide Arbeitsgruppenleiter an der Universitätsmedizin Göttingen (UMG), sowie dem Helmholtz Munich, eine neue superauflösende Hochdurchsatz-Bildgebungsmethode. Durch die neue Technik konnten die Wissenschaftler*innen einen neuronalen Zellatlas in 3D mit Einzelmolekülauflösung erstellen und entdeckten dabei einen bislang unbekannten Synapsen-Typ. Die Ergebnisse der Studie wurden in der Fachzeitschrift Cell veröffentlicht.

    In der aktuellen Studie, die von Eduard Unterauer in Jungmanns Labor am MPI für Biochemie und der LMU geleitet wurde, stellen die Forscher SUM-PAINT vor. Dabei handelt es sich um eine technologische Neuentwicklung in der Superauflösungsmikroskopie, die nun erstmals eine sehr schnelle und praktisch unbegrenzte Visualisierung und Kartierung einer Vielzahl von Proteinen ermöglicht.

    „Die Komplexität lebender Systeme reicht von ganzen Organismen und Geweben über den Aufbau komplexer zellulärer Netzwerke bis hin zur Organisation und Interaktion einzelner Biomoleküle. Damit wir diese Komplexität in ihrer Gesamtheit verstehen können müssen sowohl der Ort, als auch Identität und Interaktion einzelner Biomoleküle gleichzeitig untersucht werden. Man nennt solche Methoden, die mehrere Signale bündeln, Multiplexing-Methoden. Für ein umfassendes Verständnis der Proteinorganisation müssen insgesamt vier kritische Herausforderungen bewältigt werden: Empfindlichkeit, Durchsatz, räumliche Auflösung und Multiplexing-Fähigkeit,“ erklärt Eduard Unterauer, Ko-Erstautor der Studie.

    Das Team konzentrierte sich auf das komplexe Umfeld neuronaler Zellen des Gehirns und erstellte - zum ersten Mal überhaupt - einen neuronalen Atlas mit Einzelmolekülauflösung für 30 verschiedene Proteinarten. Dank des verbesserten Durchsatzes und der Multiplexing-Möglichkeiten konnten sie die Komplexität der synaptischen Proteinzusammensetzung von fast 900 einzelnen Synapsen entschlüsseln.

    Um diese umfangreichen Datensätze weiter im Detail zu untersuchen, entwickelte das Forschungsteam eine durch maschinelles Lernen gestützte Analysepipeline. Durch die Auswertung von 1600 Merkmalen aus den Bildgebungsdatensätzen, wie beispielsweise Proteingehalt, Verteilung oder Form, entdeckten die Wissenschaftler*innen einen bisher unbekannten Typ chemischer Synapsen. Diese Synapsen machen nur etwa 1 % aller Synapsen aus und wären mit anderen bildgebenden Verfahren nicht entdeckt worden.

    Mit SUM-PAINT stellt das Team einen integrierten Workflow für die Datenerzeugung und -analyse bereit, der von Forscher*innen auf der ganzen Welt eingesetzt werden kann. SUM-PAINT kann auf relativ einfache Weise mit handelsüblichen Mikroskopen eingesetzt werden.

    „Wir sind davon überzeugt, dass SUM-PAINT nicht nur ein Meilenstein auf dem Weg zur Entschlüsselung der Komplexität der Zellbiologie auf molekularer Ebene darstellt, sondern einen potentiellen Durchbruch bei der Entdeckung neuer therapeutischer Ansätze neurodegenerativer Krankheiten ermöglichen kann,“ sagt Ralf Jungmann, Leiter der Forschungsgruppe Molekulare Bildgebung und Bionanotechnologie am MPI für Biochemie und Inhaber des Lehrstuhls für Molekulare Physik des Lebens an LMU.

    Indem SUM-PAINT einen detaillierten Blick auf den Ort und die Interaktion einer großen Anzahl von Proteinen auf molekularer Ebene ermöglicht, eröffnet es ungeahnte Möglichkeiten bisher verborgene Details neurologischer Störungen zu untersuchen. Dadurch könnte die neue Methode zu einem tieferen Verständnis zugrunde liegender Mechanismen von Krankheiten, wie Parkinson oder der Alzheimer-Demenz, beitragen.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Ralf Jungmann
    MPI für Biochemie
    jungmann@biochem.mpg.de


    Originalpublikation:

    Eduard M. Unterauer*, Sayedali Shetab Boushehri*, Kristina Jevdokimenko*, Luciano A. Masullo, Mahipal Ganji, Shama Sograte-Idrissi, Rafal Kowalewski, Sebastian Strauss, Susanne C.M. Reinhardt, Ana Perovic, Carsten Marr, Felipe Opazo, Eugenio F. Fornasiero# and Ralf Jungmann#, Spatial proteomics in neurons at single-protein resolution. Cell, March 2024


    Bilder

    Neuronalenr Atlas mit 30 verschiedenen Proteinarten in einer räumlichen Auflösung, der durch die neue Methode SUM-PAINT visualisiert wurde. Die Detailbilder verdeutlichen durch eine Auswahl an Proteinen die extrem hohe Auflösung der Technik.
    Neuronalenr Atlas mit 30 verschiedenen Proteinarten in einer räumlichen Auflösung, der durch die neu ...

    Picture: Eduard Unterauer Copyright: Unterauer, et. al., Cell March 2024, CC BY 4.0


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).