idw - Informationsdienst
Wissenschaft
Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse und Anlagen für die erforderlichen Elektrolyseure und Brennstoffzellen. Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Produktionstechnologie IPT aus Aachen setzen dabei sowohl auf herkömmliche diskrete als auch auf kontinuierliche Produktionsverfahren durch Rolle-zu-Rolle-Anlagen (R2R).
Auf der Hannover Messe vom 22. bis 26. April 2024 zeigt das Fraunhofer IPT Teile seiner modularen Anlagentechnologie »Scalab«, die damit produzierten Bipolarplatten und Membran-Elektroden-Einheiten (MEA) sowie Drucktanks für das Speichern von Wasserstoff.
Zwei Verfahren für die Fertigung von Bipolarplatten
Bipolarplatten sind zentrale Komponenten von Brennstoffzellen- und Elektrolyseur-Stacks. Im Forschungsprojekt »H2Go« entwickeln die Forscherinnen und Forscher des Fraunhofer IPT zwei Produktionswege für die Fertigung von Bipolarplatten: Das diskrete und das kontinuierliche Prägen. Der diskrete Umformprozess ist bis heute State-of-the-Art in der industriellen Fertigung. Dabei wird das Design der Bipolarplatte beidseitig in ein dünnes Edelstahlblech übertragen. Es entsteht eine Art Halbplatte, die je nach Verwendungszweck des späteren Stacks in mehreren Prozesschritten zu einer Bipolarplatte gefügt wird.
Das kontinuierliche Prägen im Rolle-zu-Rolle-Verfahren (R2R) ist eine Produktionstechnologie der Zukunft, die Wissenschaftlerinnen und Wissenschaftler am Fraunhofer IPT erproben. Beim Walzprägen wird eine Metallfolie über ein Rollensystem geführt und dabei in einem kontinuierlichen Prozess verarbeitet. Das Design der Biopolarplatte wird durch strukturierte Walzen auf eine Metallfolie übertragen. Im nächsten Schritt schneidet ein Laser die Halbplatte aus und verschweißt jeweils zwei Stück zu einer Bipolarplatte. Im Forschungsprojekt »H2Go« wird zurzeit bereits die zweite, optimierte R2R-Anlage aufgebaut und erprobt.
Flexible Anlagentechnologie für die kontinuierliche Produktion
Flexibel erweiterungsfähig soll die zukünftige Anlagentechnologie sein. Die Wissenschaftlerinnen und Wissenschaftler des Fraunhofer IPT haben deshalb das modulare Maschinenkonzept »Scalab« entwickelt: Als Startpunkt für die Maschinengestaltung dient eine Basisarchitektur, die sich durch verschiedene Module ergänzen und zu einer Produktionsstraße ausbauen lässt. Unterschiedliche Fertigungsprozesse für Metall- oder Kunststofffolien können auf diese Weise miteinander verknüpft werden.
Im Forschungsprojekt »CoBiP« hat das Forschungsteam in einem Anlagenprototyp den kontinuierlichen Verarbeitungsprozess zur Fertigung von Bipolarplatten umgesetzt. Das Besondere an dieser Fertigungsanlage ist auch hier der modulare Aufbau: Er erlaubt es, die Produktionsstraße individuell zu gestalten und zu erweitern, indem Funktionseinheiten ausgetauscht oder ergänzt werden. Da die Entwicklungszyklen der meisten Produkte immer kürzer werden, bietet die flexible Anlagenarchitektur einige Vorteile, denn die Produktion kann damit besonders schnell auf neue Varianten und Produktdesigns umgerüstet werden. Die Verarbeitungstechnologien, die in einer R2R-Anlage zum Einsatz kommen können, sind vielfältig und reichen von Beschichtungstechnologien über Bestückungsvorgänge im Pick-and-Place-Verfahren bis hin zu Laserschneid- und Schweißprozessen.
Die MEA: Zentrale Komponente von Elektrolyseur und Brennstoffzelle
Für die Wasserstoffproduktion lassen sich nicht nur Bipolarplatten kontinuierlich im R2R-Verfahren herstellen, sondern auch MEAs. Die klassische Fertigung der MEA besteht aus den vier Schritten Beschichten, Trocknen, Assemblieren und Schneiden. Diese Schritte lassen sich ebenfalls in der Scalab-Anlage abbilden. Im Projekt »H2GIGA – FRHY« entwickelt ein Fraunhofer-Forschungsteam das flexible Anlagenkonzept weiter, um die Katalysatorschicht doppelseitig direkt auf die Membran aufzubringen. Dafür kommen Inkjet- und Nah-Infrarot-Technologien zum Einsatz.
Mit der »Referenzfabrik.H2« bildet das Fraunhofer IPT zusammen mit dem Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU und dem Fraunhofer-Institut für Elektronische Nanosysteme ENAS eine Wertschöpfungsgemeinschaft, die den zügigen Hochlauf effizienter, stückzahlskalierbaren Produktionstechnologien vorantreibt. Gemeinsam mit Industrieunternehmen entwickeln die drei Forschungsinstitute Lösungen für kostengünstige Wasserstoffsysteme in der Massenproduktion.
Wasserstoff in Drucktanks sicher verwahren
Nach der Erzeugung von Wasserstoff spielt auch die Speicherung des gasförmigen Energieträgers eine wichtige Rolle: Drucktanks, die für diesen Zweck produziert werden, müssen stark belastbar und langlebig sein. Die Wissenschaftlerinnen und Wissenschaftler forschen seit Jahren an geeigneten Konzepten für die Drucktankproduktion, die den geforderten hohen Sicherheitsstandards entsprechen. Für die Herstellung der hochfesten Wasserstoffbehälter setzt das Fraunhofer IPT auf ein Wickelverfahren, bei dem thermoplastisches faserverstärktes Tape um einen Grundkörper aus Kunststoff gewickelt und durch Lasererwärmung verschweißt wird. Belastungstests ergaben, dass Tanks, die mit diesem Verfahren hergestellt werden, einem Betriebsdruck bis zu 700 bar standhalten können. Das laserunterstütze Wickeln erweist sich dabei als vorteilhaft, weil sich thermoplastische Faserverbundwerkstoffe damit gut verarbeiten lassen, keine Nachkonsolidierung notwendig ist und sich das Material recyceln lässt.
Gemeinsam mit weiteren Fraunhofer-Instituten stellt das Fraunhofer IPT die Technologien zur Wasserstoffproduktion und -speicherung auf der Hannover Messe in Halle 13 am Stand C47 aus.
Marlin Kersting, M.Sc.
Fraunhofer-Institut für Produktionstechnologie IPT
Telefon +49 241 8904-259
marlin.kersting@ipt.fraunhofer.de
www.ipt.fraunhofer.de
https://www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/240418-hmi24-fraunhof...
Rolle-zu-Rolle-Anlage zur kontinuierlichen Verarbeitung von Metall- und Kunststofffolien.
Quelle: Fraunhofer IPT
Metallische Bipolarplatte unter einer porösen Transportschicht für die PEM-Elektrolyse.
Quelle: Fraunhofer IPT
Merkmale dieser Pressemitteilung:
Journalisten, Wirtschaftsvertreter, Wissenschaftler
Energie, Maschinenbau, Umwelt / Ökologie, Werkstoffwissenschaften
überregional
Forschungs- / Wissenstransfer, Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).