idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.04.2024 20:00

Wirkstoffe im Schnellverfahren: Neue Methode sagt im großen Maßstab voraus, wie kleine Moleküle auf Proteine wirken

Anna Schwendinger Public Relations
CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

    Für die meisten menschlichen Proteine sind keine Wirkstoffe bekannt, die sie chemisch binden - eine Wissenslücke, die die Entwicklung neuer Medikamente behindert. Forschende am CeMM haben zusammen mit Pfizer eine Methode verwendet und skaliert, um die Bindungsaktivität von Hunderten kleinen Molekülen gegenüber Tausenden menschlichen Proteinen zu messen - zehntausende Ligand-Protein-Interaktionen können nun für die Entwicklung neuer Wirkstoffe erforscht werden. Mit maschinellem Lernen und KI konnte man außerdem voraussagen, wie neue Wirkstoffe mit allen Proteinen interagieren. Die Studie erschien in Science (DOI: 10.1126/science.adk5864), alle Daten und Modelle sind frei zugänglich.

    Die Mehrheit aller Medikamente sind kleine Moleküle, die die Aktivität von Proteinen hemmen. Diese niedermolekulare Wirkstoffe sind - wenn sie gut erforscht sind - auch sehr wichtig für die Grundlagenforschung, um das Verhalten von Proteinen zu studieren. Doch für mehr als 80 Prozent aller Proteine konnten bisher keine Wirkstoffe gefunden werden. Dies erschwert nicht nur die Entwicklung neuer Medikamente, sondern stellt auch ein großes Hindernis für die biologische Grundlagenforschung dar.

    Um diese Wissenslücke zu schließen, haben Forschende am CeMM unter der Leitung von CeMM-PI Georg Winter eine experimentelle Methode skaliert, mit der die Wechselwirkungen von Hunderten kleiner Moleküle mit verschiedensten chemischen Strukturen mit Tausenden Proteinen direkt in lebenden Zellengemessen werden können. Mit den erhaltenen Daten konnte ein Katalog mit Zehntausenden Ligand-Protein-Interaktionen erstellt werden.

    Durch chemische Veränderungen der kleinen Moleküle können diese Interaktionen nun weiter optimiert werden und als Ausgangspunkte für die weitere therapeutische Entwicklung dienen. In ihrer Studie hat das Team um Georg Winter dies exemplarisch durch die Entwicklung von Wirkstoffen für zelluläre Transporter, für Komponenten der zellulären Abbaumaschinerie und für wenig untersuchte Proteine, die an der zellulären Signaltransduktion beteiligt sind, gezeigt. Darüber hinaus wurde maschinelles Lernen und künstliche Intelligenz angewandt, um vorhersagen zu können, mit welchen Proteinen neue Wirkstoffkandidaten interagieren könnten.

    "Wir waren erstaunt zu sehen, wie künstliche Intelligenz und maschinelles Lernen unser Verständnis von kleinen Molekülen in menschlichen Zellen verbessern konnte", sagt Georg Winter. „Wir hoffen, dass unsere Erkenntnisse und Modelle neue Wege in der Arzneimittelforschung erschließen werden". Um die potenzielle Wirkung und den Nutzen für die wissenschaftliche Gemeinschaft zu maximieren, stehen alle Daten und Modelle frei über eine Webanwendung zur Verfügung.

    "Dies war eine herausragende Partnerschaft zwischen Industrie und Akademie. Wir freuen uns, die Ergebnisse vorzustellen, die durch drei Jahre enger Zusammenarbeit und Teamarbeit zwischen den Gruppen erzielt wurden. Es war ein großartiges Projekt", sagt Dr. Patrick Verhoest, Vice President und Leiter der Medizinischen Forschung bei Pfizer.

    ###

    Die Studie „Large-scale chemoproteomics expedites drug discovery and predicts ligand behavior in cells“ erschien in der Zeitschrift Science am 26. April 2024. DOI: 10.1126/science.adk5864

    AutorInnen: Fabian Offensperger, Gary Tin, Miquel Duran-Frigola, Elisa Hahn, Sarah Dobner, Christopher W am Ende, Joseph W Strohbach, Andrea Rukavina, Vincenth Brennsteiner, Kevin Ogilvie, Nara Marella, Katharina Kladnik, Rodolfo Ciuffa, Jaimeen D Majmudar, S Denise Field, Ariel Bensimon, Luca Ferrari, Evandro Ferrada, Amanda Ng, Zhechun Zhang, Gianluca Degliesposti, Andras Boeszoermenyi, Sascha Martens, Robert Stanton, André Mueller, J. Thomas Hannich, David Hepworth, Giulio Superti-Furga, Stefan Kubicek, Monica Schenone, Georg E. Winter.

    Förderung: Diese Studie wurde von Pfizer, dem Wiener Wissenschafts- und Technologiefonds (WWTF) und vom Wissenschaftsfonds FWF gefördert.



    Das CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften ist eine internationale, unabhängige und interdisziplinäre Forschungseinrichtung für molekulare Medizin unter wissenschaftlicher Leitung von Giulio Superti-Furga. Das CeMM orientiert sich an den medizinischen Erfordernissen und integriert Grundlagenforschung sowie klinische Expertise, um innovative diagnostische und therapeutische Ansätze für eine Präzisionsmedizin zu entwickeln. Die Forschungsschwerpunkte sind Krebs, Entzündungen, Stoffwechsel- und Immunstörungen, sowie seltene Erkrankungen.
    Das Forschungsgebäude des Institutes befindet sich am Campus der Medizinischen Universität und des Allgemeinen Krankenhauses Wien.
    www.cemm.at

    Für Rückfragen wenden Sie sich bitte an:

    Stefan Bernhardt
    PR & Communications Manager
    Phone +43-1/40160-70 056
    Fax +43-1/40160-970 000
    sbernhardt@cemm.at

    CeMM
    Research Center for Molecular Medicine
    of the Austrian Academy of Sciences
    Lazarettgasse 14, AKH BT 25.3
    1090 Vienna, Austria

    www.cemm.at


    Originalpublikation:

    https://doi.org/10.1126/science.adk5864


    Bilder

    CeMM Principal Investigator Georg Winter, Leiter der Studie
    CeMM Principal Investigator Georg Winter, Leiter der Studie
    Bubu Dujmic
    © Bubu Dujmic/CeMM


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse, Kooperationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).