idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.06.2024 10:00

Schalten von Nanomagneten durch Infrarotlaser

Philipp Jarke Kommunikation und Marketing
Technische Universität Graz

    Physiker der TU Graz haben berechnet, wie sich geeignete Moleküle durch Infrarot-Lichtimpulse zur Bildung winziger Magnetfelder anregen lassen. Gelingt dies auch im Experiment, könnte das Prinzip in Schaltkreisen von Quantencomputern zur Anwendung kommen.

    Werden Moleküle mit Infrarotlicht bestrahlt, fangen sie durch die Energiezufuhr an zu schwingen. Für Andreas Hauser vom Institut für Experimentalphysik der TU Graz war dieses bekannte Phänomen Ausgangspunkt zu Überlegungen, ob sich mithilfe dieser Schwingungen auch Magnetfelder erzeugen lassen: Denn Atomkerne sind positiv geladen, und bewegt sich ein geladenes Teilchen, entsteht ein Magnetfeld. Am Beispiel von Metall-Phthalocyaninen – ringförmigen, planaren Farbstoffmolekülen – haben Andreas Hauser und sein Team nun berechnet, dass diese Moleküle aufgrund ihrer hohen Symmetrie tatsächlich winzige Magnetfelder im Nanometerbereich erzeugen, wenn Infrarotimpulse auf sie einwirken. Eine Vermessung der recht geringen, aber sehr präzise lokalisierten Feldstärke sollte den Berechnungen zufolge mittels Kernspinresonanzspektroskopie möglich sein. Ihre Ergebnisse haben die Forschenden im Journal of the American Chemical Society veröffentlicht.

    Kreistanz der Moleküle

    Für die Berechnungen griff das Team auf zum Teil jahrzehntealte Vorarbeiten aus der Anfangszeit der Laserspektroskopie zurück und berechnete mittels moderner Elektronenstrukturtheorie auf Supercomputern des Vienna Scientific Cluster und der TU Graz, wie sich Phthalocyanin-Moleküle bei Bestrahlung mit zirkular polarisiertem Infrarotlicht verhalten. Das Ergebnis: Die zirkular polarisierten, also schraubenförmig verdrehten, Lichtwellen versetzen das Molekül in zwei gleichzeitige Vibrationen, die im rechten Winkel zueinander stehen. „Aus der richtigen Kombination von Vorwärts-Rückwärts und Links-Rechts wird, wie jedes Rumba-Tanzpaar weiß, eine kleine, in sich geschlossene Schleife. Und durch diese kreisförmige Bewegung jedes betroffenen Atomkerns entsteht tatsächlich ein Magnetfeld, allerdings nur sehr lokal, mit Abmessungen im Bereich weniger Nanometer“, sagt Andreas Hauser.

    Moleküle als Schaltkreise in Quantencomputern

    Durch gezielte Manipulation des Infrarotlichts lässt sich sogar die Stärke und die Richtung des Magnetfeldes steuern, erklärt Andreas Hauser weiter. Dadurch würden die Moleküle zu hochpräzisen optischen Schaltern, aus denen sich potenziell auch Schaltkreise eines Quantencomputers aufbauen lassen.

    Experimente als nächster Schritt

    Mit Kolleg*innen vom Institut für Festkörperphysik der TU Graz und einem Team an der Universität Graz möchte Andreas Hauser nun auch experimentell nachweisen, dass sich molekulare Magnetfelder kontrolliert erzeugen lassen. „Für diesen Nachweis, aber auch für zukünftige Anwendungen, muss das Phthalocyanin-Molekül auf eine Oberfläche aufgebracht werden. Dadurch verändern sich jedoch die physikalischen Rahmenbedingungen, was wiederum die lichtinduzierte Anregung und die Ausprägung des Magnetfelds beeinflusst“, erklärt Andreas Hauser. „Wir wollen daher ein Trägermaterial finden, das nur wenig Einfluss auf diese Effekte hat.“ Die Wechselwirkungen zwischen den Phthalocyaninen, dem Trägermaterial und dem Infrarotlicht werden Andreas Hauser und seine Kolleg*innen zunächst wieder auf Supercomputern simulieren, bevor die vielversprechendsten Varianten im Experiment auf die Probe gestellt werden.


    Wissenschaftliche Ansprechpartner:

    Andreas HAUSER
    Assoc.Prof. Mag.phil. Dipl.-Ing. Dr.phil. Dr.techn.
    TU Graz | Institut für Experimentalphysik
    Tel.: +43 316 873 8157
    andreas.hauser@tugraz.at


    Originalpublikation:

    Molecular Pseudorotation in Phthalocyanines as a Tool for Magnetic Field Control at the Nanoscale
    Journal of the American Chemical Society, 14. Mai 2024
    Autoren:
    Raphael Wilhelmer, Matthias Diez, Johannes K. Krondorfer und Andreas W. Hauser
    DOI: https://doi.org/10.1021/jacs.4c01915


    Weitere Informationen:

    https://www.tugraz.at/forschung/fields-of-expertise/advanced-materials-science/u... Diese Forschung wird vom Österreichischen Wissenschaftsfond gefördert und ist im Field of Expertise „Advanced Materials Science“ verankert, einem von fünf strategischen Schwerpunktfeldern der TU Graz.


    Bilder

    Andreas Hauser vom Institut für Experimentalphysik der TU Graz.
    Andreas Hauser vom Institut für Experimentalphysik der TU Graz.
    Helmut Lunghammer
    Lunghammer - TU Graz

    Schematische Darstellung eines Metall-Phthalocyanin-Moleküls, das in zwei Schwingungen versetzt wird, wodurch ein rotierendes, elektrisches Dipolmoment in der Molekülebene und damit ein Magnetfeld entsteht.
    Schematische Darstellung eines Metall-Phthalocyanin-Moleküls, das in zwei Schwingungen versetzt wird ...

    Wilhelmer/Diez/Krondorfer/Hauser - TU Graz


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).