idw - Informationsdienst
Wissenschaft
Innovativer Forschungsansatz ermöglicht die Entwicklung neuartiger Materialien und Anwendungen in Technologie und Medizin
Forschende der Humboldt-Universität zu Berlin (HU) haben unter der Leitung des Chemikers und HU-Prof. Dr. Nicola Pinna einen wichtigen Fortschritt in der Nanotechnologie erzielt – einer Schlüsseltechnologie, die sich mit den allerkleinsten Partikeln und deren physikalisch-chemischen Eigenschaften beschäftigt.
Der innovative Ansatz wird neue Wege in der Materialentwicklung eröffnen und die Funktionalität sowie Komplexität von kolloidalen Materialien erheblich verbessern. Das Potenzial für Anwendungen ist sehr groß: So könnten die Materialien bespielsweise im technologischen Bereich zur Entwicklung hocheffizienter Katalysatoren beitragen, die in der chemischen Industrie oder bei der Wasserstoffproduktion eine Rolle spielen. In der Medizin könnten sie für die gezielte Wirkstofffreisetzung in der Krebstherapie eingesetzt werden, indem sie Medikamente direkt an Tumorzellen transportieren und so die Nebenwirkungen auf gesundes Gewebe minimieren.
Die Stöber-Methode erfolgreich erweitert
Die Forschenden konnten die bekannte Stöber-Methode erfolgreich erweitern, um amorphe Metall-Organische Gerüstverbindungen (MOFs) und Koordinationspolymere (CPs) zu synthetisieren. Die Stöber-Methode, die traditionell zur Herstellung amorpher glasartiger Kolloide verwendet wird, ist ein Eckpfeiler der Materialwissenschaft. Ihre Anwendung war jedoch bisher auf eine enge Palette von Materialsystemen beschränkt. Die Forschungsmethode wird im Artikel „Stöber method to amorphous metal-organic frameworks and coordination polymers“ beschrieben, der in Nature Communications erschienen ist.
„Der neue Ansatz stellt eine bedeutende Erweiterung der Stöber-Methode dar und führt eine robuste Plattform für das systematische Design von Kolloiden mit unterschiedlichen Funktionalitäts- und Komplexitätsgraden ein," erklärt Prof. Dr. Nicola Pinna von der Humboldt-Universität zu Berlin. „Unsere Methode ermöglicht die kontrollierte Synthese amorpher MOFs auf jedem Substrat, unabhängig von dessen Oberflächenchemie, Struktur oder Morphologie.“ Diese neuartige Syntheseroute führe zu einer Struktur von gleichmäßigen und gut definierten MOF- und CP-Kugeln.
Das Forschungsteam synthetisierte erfolgreich 24 verschiedene amorphe CP-Kolloide, indem es 12 Metallionen und 17 organische Liganden auswählte. Sie entwickelten auch eine Methode, um winzige Nanopartikel mit diesen Materialien zu beschichten und so Kern-Schale-Strukturen zu bilden. Mehr als 100 verschiedene Kombinationen beschichteter Partikel konnten auf diese Weise hergestellt werden, die jeweils einzigartige Eigenschaften und potenzielle Anwendungen aufweisen.
Weitere Informationen
Forschungsartikel: Zhang, W., Liu, Y., Jeppesen, H.S. et al. Stöber method to amorphous metal-organic frameworks and coordination polymers. Nat Commun 15, 5463 (2024): https://doi.org/10.1038/s41467-024-49772-2
Prof. Dr. Nicola Pinna
Institut für Chemie der Humboldt-Universität zu Berlin
nicola.pinna@hu-berlin.de
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Chemie
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).