idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
26.07.2024 11:52

Glioblastom: Humanin blockieren – Chemotherapie wirksam machen

Philipp Kressirer Kommunikation und Medien
Klinikum der Universität München

    Strahlen- und/oder Chemotherapie nach der Operation – das sind die Behandlungsoptionen bei einem der gefährlichsten Gehirntumore überhaupt, dem Glioblastom. Doch bis heute sind diese Tumoren unheilbar, mit einer mittleren Überlebensdauer von 16 Monaten nach Diagnosestellung. Nun hat ein Team internationaler Forschender unter Federführung von Prof. Dr. Rainer Glaß vom LMU Klinikum München einen Mechanismus entdeckt, der die Krebszellen gegen gängige Chemotherapeutika unempfindlich macht. Die Ergebnisse wurden jetzt in der Fachzeitschrift „Cell Reports Medicine“ veröffentlicht.

    In Deutschland erkranken alljährlich 4.000 bis 5.000 Menschen an einem Glioblastom. Nur jeder zwanzigste der Betroffenen ist nach fünf Jahren noch am Leben. Die Ursachen für diese düsteren Aussichten sind vielschichtig. Einer der Gründe für die verbesserungswürdige Bilanz sind die Resistenzmechanismen, die die Tumoren gegenüber Chemotherapeutika entwickeln.

    Zum einen ist es für viele dieser Medikamente per se schon schwierig, ins Gehirn zu gelangen, da der Körper sein Denk- und Gefühlszentrum mit der sogenannten Blut-Hirn-Schranke schützt. „Glioblastome sind nun in der Lage die Blut-Hirn-Schranke auch während des Tumorwachstums zum Teil aufrecht zu erhalten. Diese sogenannte Blut-Tumor-Schranke erschwert dann die Passage für Therapeutika“, sagt Rainer Glaß, Experte für neurochirurgische Forschung am LMU Klinikum. Zum anderen entwickeln die Hirntumorzellen Mechanismen, mit denen sie viele Schäden reparieren können, die eine Chemotherapie in ihnen anrichtet.

    „Wir haben nun herausgefunden, dass es in Glioblastomen – nicht in allen, aber in einigen – einen koordinierenden Mechanismus gibt, der beides bewerkstelligt“, erklärt Glaß. Durch ein Zusammenspiel der Tumorzellen mit den sie umgebenden Immunzellen wird ein molekularer Signalweg ausgelöst, der letztlich zur Ausschüttung des Stoffes „Humanin“ führt. In Glioblastomen aktiviert Humanin ein Oberflächenmolekül, den Rezeptor GP130, der sowohl auf den Tumorzellen als auch auf den Blutgefäßen im und um das Tumorgewebe vorhanden ist.

    Die Folgen: Einerseits kommt es in den Tumorzellen selbst zu einer großangelegten Reparatur der Schäden, die durch Chemotherapeutika verursacht werden. Andererseits signalisiert Humanin den Gefäßen um den Tumor, die Blut-Tumor-Schranke auszubauen. „Dann gelangt eine geringere Menge des Chemotherapeutikums zu den Tumorzellen“, sagt Glaß, „und diese verminderte Dosis wird in ihrer Wirkung blockiert, indem die Resistenzmechanismen hochgefahren sind.“

    Und jetzt die Hoffnung: Blockieren die Forscher den Rezeptor GP 130 mit einem Medikament, das zur Therapie des Knochenschwunds zugelassen ist, kann Humanin dort nicht mehr andocken. “Damit”, so Glaß, „verhindern wir beide Resistenzmechanismen, wir schlagen sozusagen zwei Fliegen mit einer Klappe.“

    Bisher funktioniert das alles im Zell- und Tierversuch. „Selbstverständlich benötigen wir klinische Studien mit Glioblastom-Patienten, um die Wirkung des Medikaments beim Menschen zu beurteilen“, sagt Rainer Glaß. Das Medikament heißt Bazedoxifene und kann als eines von wenigen die Blut-Hirn-Schranke passieren. Der Pferdefuß: Es verändert die Wirkung des weibliches Geschlechtshormons Östrogen und dadurch entstehende Nebenwirkungen müssten, vor allem bei Frauen, eventuell medikamentös kompensiert werden. Weibliche Mäuse reagierten jedenfalls mit Gewichtsverlust auf das Medikament.

    Kurzum: Es braucht nun klinische Forschung, die zeigen muss, ob diese potenziell neue Therapie für das Glioblastom deutlichen Nutzen für die Patienten bringt.

    Beteiligte Institutionen an der Forschung:
    Sun Yat-sen University, Guangzhou, China; Max-Delbrück-Centrum für Molekulare Medizin, Berlin; University of Texas, Austin, USA; LMU München; Johannes Kepler Universität Linz; MD Anderson Cancer Center, Houston, USA; Mayo Clinic, Scottsdale, USA; Universitätsmedizin Göttingen.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Rainer Glaß
    Professur für Neurochirurgische Forschung
    Neurochirurgische Klinik
    LMU Klinikum München
    Campus Großhadern
    E-Mail: rainer.glass@med.uni-muenchen.de


    Originalpublikation:

    Myeloid cells coordinately induce glioma cell-intrinsic and -extrinsic pathways for chemoresistance via GP130 signaling
    Jiying Cheng, Min Li, Edyta Motta, Charlotte Flüh, Roland E. Kälin, Rainer Glass, Open AccessPublished: July 24,
    DOI: https://doi.org/10.1016/j.xcrm.2024.101658


    Weitere Informationen:

    https://www.lmu-klinikum.de/aktuelles/pressemitteilungen/humanin-blockieren-chem...


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).