idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.08.2024 13:10

Hidden Harmonies: Team discovers Magnon-phonon Fermi resonance in an antiferromagnet

Simon Schmitt Kommunikation und Medien
Helmholtz-Zentrum Dresden-Rossendorf

    Soon, data storage centers are expected to consume almost 10 percent of the world’s energy generation. This increase is, among other things, due to intrinsic limitations of the materials used – ferromagnets. Consequently, this problem has ignited a quest for faster and more energy efficient materials. One of the most encouraging pathways are antiferromagnets – materials that not only promise more robust and 1.000 times faster read and write operations but also are more abundant than their ferromagnetic counterparts. Understanding and control of these quantum materials is key to advancing future technologies. An international research team now reports on a major step forward in this endeavor.

    Interaction between spins and the crystal lattice of a material is essential in spintronic applications, as they use spin – the electron´s magnetic moment – to write information in magnetic bits. In ferromagnetic materials, these spins interact strongly, creating a ripple effect known as a spin wave, which can travel through the material. Spin waves are exciting because they can carry information without moving electrons, unlike the electric currents in today’s computer chips, which means less heat is produced. And just as light can be thought of as quantized particles called photons, spin waves have their own quasiparticles called magnons. On the other hand, when atoms in a material´s lattice vibrate uniformly, this motion is described by quasiparticles called phonons.

    The team’s research focused on the antiferromagnetic material cobalt difluoride (CoF2) where magnons and phonons coexist. In this material, neighboring spins are aligned antiparallel, allowing for spin dynamics a thousand times faster than in conventional ferromagnetic materials. This advancement could lead to faster and more energy efficient data bit writing. Scientists excite these spin dynamics by coupling with light pulses at terahertz frequencies.

    In addition, the so-called Fermi resonance, first described almost a century ago in carbon dioxide, occurs at the atomic and molecular level when two vibrational modes caused by the absorption of thermal energy interact and one is twice the frequency of the other. The principle of Fermi resonance has so far been extended to magnonic or phononic systems. In this work however, scientists achieve for the first time a strong coupling between the spin and the crystal lattice which constitutes a mutual energy transfer between these subsystems of an antiferromagnetically ordered material.

    Magnons and phonon in sync

    In this project, experimental and theoretical condensed matter scientists from the Institute for Molecules and Materials (IMM) of Radboud University, the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), University of Cologne, and the Ioffe Institute, revealed a novel energy transfer channel between magnons and phonons in an antiferromagnet under the condition of Fermi resonance. This may enable future control of such antiferromagnetic systems for faster and more energy-efficient data storage. Using the intense and spectrally bright accelerator-based superradiant THz source at HZDR’s ELBE Center for High-Power Radiation Sources, the researchers selectively excited the antiferromagnetic spin resonance and tuned its center frequency by high external magnetic field up to several Tesla. This configuration allowed them to tune the spin resonance frequencies to half the lattice vibration frequency fulfilling the Fermi resonance condition.

    The researchers found a new regime of coupled magnon-phonon dynamics that allows energy exchange between these two subsystems at the Fermi resonance. By tuning the frequencies of the magnons, the researchers can control this process and in particular enhance the magnon-phonon coupling. This new regime was observed as a broadening of the phonon spectra and an asymmetric redistribution of the phonon spectral weight. Ultimately, their results suggest a hybridized two-magnon-one-phonon state. Their work could prove important in the fields of magnonics and phononics where coherent energy control plays a central role.

    Innovative functionalities in future data storage

    The research results offer a pathway to manipulate spin-lattice coupling on demand. Firstly, this allows for a considerable increase in operational frequency from the conventional GHz rate offered by ferromagnetic materials up to the THz scale in antiferromagnetic materials. Secondly, this might significantly enhance the efficiency of magnetic writing, which, in turn, will reduce the minimal amount of energy required for bit writing operations, thereby considerably lowering total energy consumption. Therefore, the results propose an innovative way to control the dynamics of antiferromagnets, leading to conceptually new data storage technologies based on such materials. In future studies, the research team aims to explore if the condition of Fermi resonance can be expanded to control other novel quantum materials, potentially leading to advancing material science and technology.

    Publication:
    T. W. J. Metzger, K. A. Grishunin, C. Reinhoffer, R. M. Dubrovin, A. Arshad, I. Ilyakov, T. V.A.G. de Oliveira, A. Ponomaryov, J.- C. Deinert, S. Kovalev, R. V. Pisarev, M. I. Katsnelson, B. A. Ivanov, P. H. M. van Loosdrecht, A. V. Kimel, E. A. Mashkovich, Magnon-phonon Fermi resonance in antiferromagnetic CoF2, in Nature Communications, 2024 (DOI: 10.1038/s41467-024-49716-w )

    More information:
    Jan-Christoph Deinert
    Institute of Radiation Physics at HZDR
    Phone: +49 351 260 3626 | Email: j.deinert@hzdr.de

    Thomas Metzger
    Institute for Molecules and Materials (IMM) | Radboud University
    Email: thomas.metzger@.ru.nl

    Evgeny A. Mashkovich
    University of Cologne, Institute of Physics II
    Phone: +49 221 470 1710 | Email: mashkovich@ph2.uni-koeln.de

    Media contact:
    Simon Schmitt | Head
    Communications and Media Relations at HZDR
    Phone: +49 351 260 3400 | Mobile: +49 175 874 2865 | Email: s.schmitt@hzdr.de

    The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs – as an independent German research center – research in the fields of energy, health, and matter. We focus on answering the following questions:
    • How can energy and resources be utilized in an efficient, safe, and sustainable way?
    • How can malignant tumors be more precisely visualized, characterized, and more effectively treated?
    • How do matter and materials behave under the influence of strong fields and in smallest dimensions?

    To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the Dresden High Magnetic Field Laboratory and the ELBE Center for High-Power Radiation Sources.
    HZDR is a member of the Helmholtz Association and has six sites (Dresden, Freiberg, Görlitz, Grenoble, Leipzig, Schenefeld near Hamburg) with almost 1,500 members of staff, of whom about 670 are scientists, including 220 Ph.D. candidates.


    Wissenschaftliche Ansprechpartner:

    Jan-Christoph Deinert
    Institute of Radiation Physics at HZDR
    Phone: +49 351 260 3626 | Email: j.deinert@hzdr.de

    Thomas Metzger
    Institute for Molecules and Materials (IMM) | Radboud University
    Email: thomas.metzger@.ru.nl

    Evgeny A. Mashkovich
    University of Cologne, Institute of Physics II
    Phone: +49 221 470 1710 | Email: mashkovich@ph2.uni-koeln.de


    Originalpublikation:

    T. W. J. Metzger, K. A. Grishunin, C. Reinhoffer, R. M. Dubrovin, A. Arshad, I. Ilyakov, T. V.A.G. de Oliveira, A. Ponomaryov, J.- C. Deinert, S. Kovalev, R. V. Pisarev, M. I. Katsnelson, B. A. Ivanov, P. H. M. van Loosdrecht, A. V. Kimel, E. A. Mashkovich, Magnon-phonon Fermi resonance in antiferromagnetic CoF2, in Nature Communications, 2024 (DOI: 10.1038/s41467-024-49716-w )


    Weitere Informationen:

    https://www.hzdr.de/presse/magnon-phonon_fermi_resonance


    Bilder

    Artistic illustration of Magnon-phonon Fermi resonance in an antiferromagnet.
    Artistic illustration of Magnon-phonon Fermi resonance in an antiferromagnet.
    B. Schröder/ HZDR
    B. Schröder/ HZDR


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Energie, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Kooperationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).