idw - Informationsdienst
Wissenschaft
The safe use of lithium-ion batteries, such as those used in electric vehicles and stationary energy storage systems, critically depends on condition monitoring and early fault detection. Failures in individual battery cells can lead to serious issues, including fires. To mitigate these risks, researchers at TU Darmstadt and the Massachusetts Institute of Technology (MIT) have developed novel methods for battery analysis and monitoring that leverage physically constrained machine learning approaches.
The team of Joachim Schaeffer, Eric Lenz, and Professor Rolf Findeisen from the Institute of Automation Technology and Mechatronics at TU Darmstadt, together with the groups of Professor Richard Braatz and Professor Martin Bazant at MIT, developed a method that combines physical methods with machine learning. Using recursive Gaussian processes, they can detect time-dependent and operational changes in battery cells. These recursive methods can be applied in real-time and efficiently process large amounts of data, enabling continuous online monitoring of battery systems in the future.
For this research, the scientists were able to use a unique dataset: a research partner anonymously provided data from 28 battery systems that had been returned to the manufacturer due to problems. The dataset includes over 133 million data rows from 224 battery cells and is one of the first of its kind to be made publicly available.
The results of the methodical developments and analyses, recently published in the renowned journal Cell Reports Physical Science, confirm that often only a single cell in a battery system exhibits abnormal behavior, which can affect the entire system. These findings contribute to a better understanding of how batteries age and under what conditions they fail. The methods make it possible to continuously monitor batteries in the future, thus increasing safety.
Joachim Schaeffer, a doctoral student at the Control and Cyber-Physical Systems Laboratory, Department of Electrical Engineering and Information Technology at TU Darmstadt and at MIT, was awarded the MIT Open Data Prize for the open access data produced during the project. Out of more than 70 submissions, ten prize winners were selected.
About TU Darmstadt
TU Darmstadt is one of Germany’s leading technical universities and a synonym for excellent, relevant research. We are crucially shaping global transformations – from the energy transition via Industry 4.0 to artificial intelligence – with outstanding insights and forward-looking study opportunities.
TU Darmstadt pools its cutting-edge research in three fields: Energy and Environment, Information and Intelligence, Matter and Materials. Our problem-based interdisciplinarity as well as our productive interaction with society, business and politics generate progress towards sustainable development worldwide.
Since we were founded in 1877, we have been one of Germany’s most international universities; as a European technical university, we are developing a trans-European campus in the network, Unite! With our partners in the alliance of Rhine-Main universities – Goethe University Frankfurt and Johannes Gutenberg University Mainz – we further the development of the metropolitan region Frankfurt-Rhine-Main as a globally attractive science location.
Prof. Dr.-Ing. Rolf Findeisen
Tel.: +49 6151 16-25200
E-Mail: rolf.findeisen@iat.tu-darmstadt.de
The publication can be found under https://www.cell.com/cell-reports-physical-science/fulltext/S2666-3864(24)00563-...
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Elektrotechnik, Energie, Informationstechnik, Verkehr / Transport
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).