idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
31.10.2024 09:31

SAFECAR-ML: Artificial Intelligence speeds up vehicle development

Dipl.-Journalist (TU Dortmund) Michael Krapp Marketing und Kommunikation
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

    New machine learning methods are enabling better understanding and processing of crash test development data. The SAFECAR-ML project is developing an automated solution for documenting virtual crash tests based on artificial intelligence (AI). The aim is to simplify and enhance the efficiency of the design process.

    SANKT AUGUSTIN – Shattering glass, twisted metal, and flying debris are rare sights in today’s automotive crash tests, as most crash simulations are performed digitally. However, documenting every modification in the design of virtual crash vehicle models is crucial for development engineers. This is a tedious and expensive process. The goal of the new project SAFECAR-ML is to simplify this work. By combining novel artificial intelligence (AI) methods with technical knowledge from vehicle development, the project partners from research and the automotive industry aim to standardize data processing for documenting virtual crash tests.

    Machine Learning (ML) makes it possible to interpret the engineers’ free-text inputs semantically. The unstructured data obtained in this way must be standardized and, for instance, linked to virtual vehicle data for ML processing. The software developed in the project will then automatically derive next steps and recommend actions.

    “Changes to the virtual vehicle model can be recorded in natural language and automatically processed – similar to what large language models such as GPT-4 can already do. What is new is the integration of multimodal engineering data with ML. This approach has great potential for optimizing development processes through computer-aided engineering,” says Dr. Daniela Steffes-lai, a researcher in SCAI’s Numerical Data-Driven Prediction business unit. The goal of the project is to make vehicle development faster and more cost-effective overall.

    Fraunhofer SCAI is contributing its extensive experience in ML and the comparative analysis of simulation results to the project. Its goal is to develop a formal description of technical knowledge for product development. Cooperation with the automotive industry opens the door for further applications in computer-aided engineering.

    SCALE GmbH in Ingolstadt is the project partner working with Fraunhofer SCAI. The car manufacturers AUDI, Volkswagen, and Porsche are associated partners.

    The German Federal Ministry of Education and Research (BMBF) is funding the project from September 2024 until February 2027 as part of the “Erforschung, Entwicklung und Nutzung von Methoden der Künstlichen Intelligenz in kleinen und mittleren Unternehmen (KI4KMU)” program. The total amount of funding is 670,000 euros.


    Wissenschaftliche Ansprechpartner:

    Dr. Daniela Steffes-lai
    Business Area Numerical Data-Driven Prediction
    Fraunhofer Institute for Algorithms and Scientific Computing SCAI
    Schloss Birlinghoven 1, 53757 Sankt Augustin
    E-Mail: daniela.steffes-lai@scai.fraunhofer.de
    www.scai.fraunhofer.com/ndv


    Bilder

    By adjusting the sheet thickness and geometry of the chassis rails (red: original version, green: software-optimized version) during the product development cycle, impact energy can be absorbed better, thereby enhancing the safety of the vehicle occupants.
    By adjusting the sheet thickness and geometry of the chassis rails (red: original version, green: so ...

    Fraunhofer SCAI


    Merkmale dieser Pressemitteilung:
    Journalisten
    Informationstechnik, Mathematik, Verkehr / Transport, Werkstoffwissenschaften
    überregional
    Forschungsprojekte, Kooperationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).