idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.12.2024 13:45

New and robust anti-reflective solutions for laser inertial fusion for the clean energy supply of the future

Desiree Haak Press & Public Relation
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

    In order for future laser fusion power plants to work efficiently and reliably, current laser technologies must be adapted to the extreme requirements of high power and continuous operation. In the new "nanoAR" research project, nine project partners from industry and research are working on methods for structural antireflection solutions and reducing sub-surface damage of the optical components used. Their approaches could also be transferred to other fields of application for high-power optics.

    In laser inertial fusion, high-precision and high-energy laser beams are used to compress and heat fuel capsules. The temperature and pressure in the capsules increase to such an extent that atomic nuclei fuse, releasing a large amount of energy. "If the amount of energy gained is greater than that expended, laser inertial confinement fusion can be a valuable source of clean energy for the future. For this to succeed, however, the laser technologies used must be further developed to meet the extreme challenges," says Dr. Christian Rieck from Glatt Ingenieurtechnik GmbH in Weimar. He is coordinating the joint project, which is scheduled to run until 2027 and is being funded by the German Federal Ministry of Education and Research (BMBF) with six million euros as part of the "Basic technologies for fusion - on the way to a fusion power plant" program.

    Innovative anti-reflective coatings and structures to optimize laser beam transport

    The laser beams must be aligned extremely precise in order to hit the fuel capsule evenly and ensure symmetrical compression. Their path is controlled by various materials and atmospheres that act like lenses. This leads to optical losses, which are higher the more lenses are used. Energy is also lost when the laser beam hits the fuel capsule because its material reflects some of the energy. Last but not least, the high energy of the laser causes thermal expansion, which varies depending on the material properties and can lead to cracks or other damage and thus have a negative impact on the precision and service life of the systems.

    The project partners are therefore focusing on the anti-reflective coatings that are used to reduce reflection losses. For example: when a laser hits fused silica glass, the reflection losses are around 4 percent per interface. If the beam is directed 50 times by a glass lens, only 1.7 percent of the output power passes through the last interface. For this reason, lenses are already equipped with extremely thin, multi-layer anti-reflective coatings that effectively reduce losses.

    "However, these solutions hardly seem suitable for use in future petawatt laser fusion reactors. This is because the significantly higher laser power increases the thermal load: if the substrate and the anti-reflective coatings expand to different degrees, there is a risk of defects," says Dr. Nadja Felde from the "Functional Surfaces and Coatings" department at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena. In addition, difficult to detect subsurface damage (SSD), which may occur during the manufacturing process and is less significant at lower laser powers, can become critical in laser fusion applications - especially in continuous operation at repetition rates of around 10 Hz.

    Combination of anti-reflective coatings and nanostructured materials

    In order to pave the way for viable solutions here, the project partners are focusing on nanostructured or nanoporous anti-reflective coatings based on materials with a high band gap, which should ensure the required laser damage threshold. On the other hand, they are testing a subtractive approach: instead of a combination of a substrate material and multi-layer anti-reflective coatings, they are relying on lenses made from a single material, which is to be given the desired anti-reflective properties by suitably nanostructuring its surface. Using the example of two materials with a large band gap (fused silica glass and calcium fluoride), large-area demonstrators are to be developed for different wavelengths and pulse lengths.

    "We want to prove that the approach with anti-reflection structures can be specifically optimized for high-power laser applications such as laser inertial confinement fusion and achieve the best possible anti-reflection effects below 0.5 percent residual reflection. The technology also offers further exploitation opportunities in the field of high-power optics," says Prof. Dr. Thomas Höche, head of the "Optical Materials and Technologies" business unit at Fraunhofer Institute for Microstructure of Materials and Systems IMWS in Halle (Saale).

    Partners from industry and research in the "nanoAR" project

    In the "nanoAR" project, the project partners are pooling their expertise from substrate manufacturing and processing methods for the effective reduction of SSD, to technology-open process development for nanostructure generation, including the use of simulations and modeling, to high-resolution material characterization and the development of new methods for quality assurance.

    The following companies and research institutes are involved in the project "Antireflective metasurfaces on wide bandgap materials (nanoAR)": Glatt Ingenieurtechnik GmbH (Weimar), POG Präzisionsoptik Gera GmbH (Löbichau), FLP Microfinishing GmbH (Zörbig), Trionplas Technologies GmbH (Leipzig), Fraunhofer IOF (Jena), Fraunhofer IMWS (Halle/Saale), the Fraunhofer Institute for Mechanics of Materials IWM (Freiburg), the Leibniz Institute for Surface Modification IOM (Leipzig) and the Ernst Abbe University of Applied Sciences (Jena).


    Wissenschaftliche Ansprechpartner:

    Dr. Astrid Bingel
    Fraunhofer IOF
    Department Functional Surfaces and Coatings

    Phone: +49 3641807 - 279
    Mail: astrid.bingel@iof.fraunhofer.de


    Weitere Informationen:

    https://www.iof.fraunhofer.de/en/pressrelease/2024/nanoAR-research-project.html


    Bilder

    With high-resolution equipment, small surface defects can be detected.
    With high-resolution equipment, small surface defects can be detected.

    © Fraunhofer IMWS

    An example of a partially anti-reflective optical component manufactured at Fraunhofer IOF in Jena.
    An example of a partially anti-reflective optical component manufactured at Fraunhofer IOF in Jena.

    © Fraunhofer IOF


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Energie, Physik / Astronomie
    überregional
    Forschungsprojekte
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).