idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.12.2024 09:33

Forbes “30 under 30”: UKD physician Fiona Kolbinger is one of the most promising young scientists

Anne Vetter Presse- und Öffentlichkeitsarbeit
Nationales Centrum für Tumorerkrankungen Dresden (NCT/UCC)

    In December, Forbes magazine named Dr. Fiona Kolbinger one of the most influential young scientists on its famous “30 under 30 North America 2025” list. With her research at the interface between surgery, data science and computer science, Kolbinger is developing pioneering AI methods for improved treatment in difficult operations.

    Every year, the US media company Forbes publishes lists of the most influential young people under the age of 30: from technology, AI, science and health to education, social media and entertainment. The 29-year-old physician Fiona Kolbinger, who works both as a research professor at Purdue University (Indiana, USA) and at the University Hospital Carl Gustav Carus in the Clinic and Polyclinic for Visceral, Thoracic and Vascular Surgery (VTG), is one of the most important personalities of the coming year in the opinion of the jury with her scientific work.

    Kolbinger's goal is to integrate AI methods into surgical patient care. The AI tools she has developed can predict the ideal treatment approach based on patient data that is known before an operation, such as age, gender or comorbidities. This makes it possible to select customized treatment approaches with the highest probability of success. During operations, special video analysis software is used to visualize structures such as blood vessels and nerves in real time. “This intraoperative image recognition helps to identify important anatomical target and risk structures during minimally invasive operations,” explains the young scientist.

    If anatomical structures are not recognized or misinterpreted during a surgical procedure, this can lead to complications. This type of error is one of the most common causes of complications in minimally invasive operations in the abdominal cavity, which are performed through small incisions and using video images from the surgical camera. The new AI methods were developed and tested in collaboration with Prof. Stefanie Speidel, Head of the Department of Translational Surgical Oncology at the National Center for Tumor Diseases (NCT/UCC) Dresden, and Prof. Jürgen Weitz, Director of the Clinic for Visceral, Thoracic and Vascular Surgery.

    “As part of our studies, the programs were trained to recognize eleven structures that are particularly relevant for colon cancer operations, such as the ureter, pancreas, small intestine and colon,” explains Kolbinger. The researchers then tested the performance of the program using the pancreas as an example in comparison with 28 human test subjects. The artificial intelligence recognized the organ just as well as surgeons with more than ten years of experience in minimally invasive surgery.

    “The success of a cancer operation - especially long-term survival and quality of life - depends crucially on the precision of the surgery and therefore in particular on the experience and skill of the surgeon. Fiona Kolbinger's research could improve the overall quality of surgery in the long term,” emphasizes Prof. Jürgen Weitz.
    “Fiona Kolbinger is an exceptional talent who combines surgery and AI in an innovative way in order to create added value for patients with her interdisciplinary research,” says Prof. Stefanie Speidel, praising the young scientist.

    Personal details:
    Fiona Kolbinger studied medicine at Heidelberg University. After completing her doctorate at the German Cancer Research Center (DKFZ), she worked as a physician at the Clinic and Polyclinic for Visceral, Thoracic and Vascular Surgery at the University Hospital Carl Gustav Carus Dresden and conducted research in Prof. Stefanie Speidel's group at the National Center for Tumor Diseases (NCT/UCC) Dresden and the Else Kröner Fresenius Center for Digital Health (EKFZ) at TU Dresden on AI-based image recognition models during minimally invasive surgery. Since 2023 she leads an independent research group at Purdue University (USA) as Research Assistant Professor.

    Contact:
    Anne-Stephanie Vetter
    Staff Unit Public Relations of Carl Gustav Carus Faculty of Medicine
    at TUD Dresden University of Technology
    National Center for Tumor Diseases (NCT/UCC) Dresden
    Tel.: +49 (0) 351 458 17903
    Email: anne-stephanie.vetter@tu-dresden.de
    www.tu-dresden.de/med


    Originalpublikation:

    European Journal of Surgical Oncology: https://www.ejso.com/article/S0748-7983(23)00622-4/fulltext
    International Journal of Surgery: https://journals.lww.com/international-journal-of-surgery/fulltext/2023/10000/an...
    Nature Scientific Data: https://www.nature.com/articles/s41597-022-01719-2


    Weitere Informationen:

    https://www.nct-dresden.de/de/das-nctucc-dresden/newsroom/pressemitteilungen/com...


    Bilder

    Fiona Kolbinger
    Fiona Kolbinger
    Leopold Green


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Informationstechnik, Medizin
    überregional
    Wettbewerbe / Auszeichnungen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).