idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.01.2025 16:31

Individual cells can be connected to plastic electrodes

Anders Törneholm Communications officer anders.torneholm@liu.se +4613286839 Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    Researchers at Linköping University have succeeded in creating a close connection between individual cells and organic electronics. The study, published in Science Advances, lays the foundation for future treatment of neurological and other diseases with very high precision.

    “We could target individual cells and explore how this affected their ability to stay healthy and functional,” says Chiara Musumeci, researcher at the Laboratory of Organic Electronics, LOE, at Linköping University.

    The brain is controlled by electrical signals that are converted into chemical substances in the communication between the brain cells. It has long been known that different parts of the brain can be stimulated with the help of electricity. But methods are often imprecise and affect large parts of the brain. Sometimes, metal electrodes are needed to hit the right part of the brain, which entails a risk that the hard electrode instead damages the brain tissue, causing inflammation or scarring.

    A solution for treating specific parts of the brain could involve conductive plastics, also known as polymers.

    “The goal is to combine biological systems with electrodes, specifically using organic conductive polymers. As polymers are soft and conformable and can transport both electricity and ions, they are preferable to conventional electrodes,” says Chiara Musumeci.

    Together with researchers at Karolinska Institutet, the research team at Campus Norrköping has succeeded in anchoring the conductive plastic to individual living cell membranes. This opens up for future precise treatments of neurological diseases.

    “At the moment, our results are rather general, which is a good thing, as our future research can explore what types of diseases this important tool would be suitable for. But more research is needed before we can say anything with any certainty,” says Alex Bersellini Farinotti, researcher at Karolinska Institutet.

    Previous attempts to anchor organic electronics at the cell surface have been made, but with genetically modified cells that make the membranes more receptive. In their present study, the researchers have not used genetically modified cells and yet managed to achieve a tight coupling without affecting the cell's other functions. This is the first time this has been done.

    To succeed, the researchers used a two-step process where an anchor molecule is first used to create an attachment point in the cell membrane. At the other end of the molecule is a structure where the polymer electrode itself can attach.

    The next step in the research is to get a more evenly distributed and stable anchoring over the membrane and to see how the polymer coupling behaves over time. Hanne Biesmans is a doctoral student at LOE and believes that there is great potential but also many challenges left to solve.

    “We have taken a big step forward now. But we can’t say with any certainty that it will work in living tissue. This is basic research, where we are now trying to figure out the way forward.”

    The study was funded by the European Research Council, the Swedish Research Council, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation and through the Swedish Government’s strategic research area in advanced functional materials, AFM, at Linköping University.


    Wissenschaftliche Ansprechpartner:

    Chiara Musumeci, researcher, chiara.musumeci@liu.se, 011-36 34 98


    Originalpublikation:

    From synthetic vesicles to living cells: Anchoring conducting polymers to cell membranes, Hanne Biesmans, Alex Bersellini Farinotti, Tobias Abrahamsson, Katriann Arja, Caroline Lindholm, Xenofon Strakosas, Jennifer Y. Gerasimov, Daniel T. Simon, Camilla I. Svensson, Chiara Musumeci, Magnus Berggren, Science Advances Vol 10 Issue 50, published online 11 December 2024.

    DOI: 10.1126/sciadv.adr2882


    Bilder

    Researchers at the Laboratory of Organic Electronics and Karolinska Institutet have developed a method to attach conductive plastics to individual cells.
    Researchers at the Laboratory of Organic Electronics and Karolinska Institutet have developed a meth ...
    Foto: Thor Balkhed


    Merkmale dieser Pressemitteilung:
    Journalisten
    Medizin, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).