idw - Informationsdienst
Wissenschaft
Die nachhaltige Herstellung chemischer Grundstoffe mit Einsatz von CO2 als Kohlenstoffquelle ist das Ziel im Projekt »PKat4Chem«. Dabei soll das Verfahren der Niedertemperatur-Plasma-Katalyse (NTPK) so weiterentwickelt werden, dass aus Biomasse erzeugte Gase in einem einstufigen Prozess in Methanol oder Ethylen umgewandelt werden können. Das Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS bringt seine Expertise zur Analyse der eingesetzten Werkstoffe ein. Der Ansatz verspricht hohe Effizienz und Flexibilität.
Chemische Grundstoffe herzustellen, ohne fossile Rohstoffe zu verbrauchen und damit CO2-Emissionen zu erzeugen – das ist eine der wichtigsten Aufgaben zur Erreichung der Klimaziele. Denn diese in enormen Mengen produzierten Grundchemikalien sind Ausgangsmaterial für viele andere Industrie- und Alltagsprodukte wie Kunststoffe, Düngemittel oder Treibstoffe.
Ein sehr wirkungsvoller Ansatz für eine nachhaltige Produktion organischer Grundchemikalien wie Ethylen, Methanol oder Styrol sind dabei Power-to-X-Technologien: Hierbei wird Strom aus erneuerbaren Energien genutzt. Der für die chemischen Verbindungen benötigte Wasserstoff kann mittels Elektrolyse ebenfalls emissionsfrei gewonnen werden. Kommt als Kohlenstoffquelle CO2 zum Einsatz, kann der Kohlenstoffkreislauf geschlossen und sogar bereits emittiertes Treibhausgas der Atmosphäre entzogen werden.
Die Umwandlung und damit Nutzbarmachung von CO2 zur Gewinnung von chemischen Grundstoffen steht im Mittelpunkt des Projekts »PKat4Chem«. Das Konsortium setzt dabei auf Niedertemperatur-Plasma-Katalyse (NTPK). Mit dieser Technologie sollen aus Biomasse erzeugte Gase wie Methan (CH4) in Kombination mit CO2 hocheffizient mittels Plasmas aktiviert und durch entsprechende Katalysatoren in einem einstufigen Verfahren zu chemischen Grundstoffen wie Methanol (CH3OH) oder Ethylen (C2H4) umgesetzt werden.
Der Fokus des Projekts liegt auf NTPK-Reaktoren, weil diese sehr hohe Wirkungsgrade von bis zu 95 Prozent erreichen können. Zudem bieten sie den Vorteil einfacher Skalierbarkeit und niedrigere Investitions- und Betriebskosten. So wird ein potenziell schlüsselfertiger Prozess möglich, der dynamisch und bedarfsangepasst ein- und ausgeschaltet werden kann.
Ziel des bis Ende 2027 laufenden Projekts ist eine neuartige Prozesskette. Im Kern steht die Entwicklung einer NTPK-Reaktormodul-Einheit zur Synthese von Methanol oder Ethylen. Diese soll im Feldversuch auf einem Teststand an einer bestehenden Biogasanlage validiert werden. Das Fraunhofer IMWS übernimmt im Projekt die mikrostrukturelle Charakterisierung des patentierten Elektrodenwerkstoffs und der entsprechenden Katalysatoren. Hierbei werden die Materialien hinsichtlich der Mikrostruktur mittels Rasterelektronenmikroskopie (REM) und Transmissionselektronenmikroskopie (TEM) analysiert und die Elementverteilungen mit Energiedispersiver Röntgenspektroskopie (EDXS) untersucht. Zusätzlich steht die Untersuchung von oberflächennahen Materialveränderungen durch die Einwirkung der NTPK mittels Röntgenphotoelektronenspektroskopie (XPS) und Time-of-Flight Sekundärionenmassenspektrometrie (ToF-SIMS) im Vordergrund der Untersuchungen des Fraunhofer-Teams.
»Um die Vorgänge an der Elektrode zu verstehen, wollen wir auch grundlegende Eigenschaften thermoanalytisch untersuchen und dabei die Redoxvorgänge an den verschiedenen Grenzflächen der beteiligten Materialien mittels Elektronenenergieverlustspektroskopie (EELS) aufklären. Das würde eine Materialentwicklung ,unter Sicht‘ möglich machen«, erläutert Christian Thieme, der das Projekt am Fraunhofer IMWS leitet. »Der Ansatz bietet zahlreiche Vorteile, von der hohen Flexibilität über die dezentrale Anwendung bis zur Möglichkeit, Biogas tatsächlich vollständig zu nutzen und prozessbedingte CO2-Emissionen auszuschließen. Nicht zuletzt motiviert uns auch, dass ein enormer Bedarf an nachhaltigen Grundchemikalien besteht, für die chemische Industrie ebenso wie perspektivisch für den Verkehrssektor.«
Am Projekt »PKat4Chem« sind neben dem Projektkoordinator enaDyne GmbH auch die EDL Anlagenbau Gesellschaft mbH, die Arcanum Energy Systems GmbH & Co KG, die HTWK Leipzig, die TU Bergakademie Freiberg, die Universität Leipzig, die Ruhr-Universität Bochum sowie das Fraunhofer IMWS beteiligt.
Das Projekt wird im Rahmen des Energieforschungsprogramms des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) gefördert (Förderkennzeichen: 03EE5187F).
Dr. Christian Thieme; Gruppenleiter »Mikrostrukturbasierte Materialentwicklung«; Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS; Walter-Hülse-Straße 1; 06120 Halle (Saale); Telefon +49 345 5589-243; christian.thieme@imws.fraunhofer.de
https://www.imws.fraunhofer.de/de/kompetenzfelder/optische-materialien1/aktuelle...
Elementverteilung an der Grenzfläche eines Elektrodenwerkstoffs.
Fraunhofer IMWS
Dreidimensionale Bewertung des Sinterverhaltens einer Elektrodenbeschichtung mittels Röntgentomograp ...
Fraunhofer IMWS
Merkmale dieser Pressemitteilung:
Journalisten
Chemie, Umwelt / Ökologie, Werkstoffwissenschaften
überregional
Forschungsprojekte
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).