idw - Informationsdienst
Wissenschaft
Fraunhofer IAF has developed a monolithic bidirectional switch with a blocking voltage of 1200 V using its GaN-on-insulator technology. The switch contains two free-wheeling diodes and can deliver performance and efficiency benefits in bidirectional chargers and drives for electric vehicles as well as in systems for generating and storing renewable energy. The results will be presented together with other developments in power electronics from May 6 to 8, 2025, at PCIM Europe in Nuremberg.
Technological innovations in power electronics are not only essential for the success of the energy transition, they also provide sustainable support for economic development in Europe. The Fraunhofer Institute for Applied Solid State Physics IAF develops power electronic components based on the wide-bandgap compound semiconductor gallium nitride (GaN) to enable further developments in electric mobility, the energy industry, and climate technology.
Most recently, Fraunhofer IAF has made significant progress in high-voltage and low-voltage components: At PCIM Europe 2025, researchers will present a highly integrated bidirectional switch (MBDS) with a blocking voltage of 1200 V. They will also demonstrate the use of a conventional GaN transistor with a gate contact as a bidirectional switch in a 3-level T-type converter. Both results were achieved as part of the GaN4EmoBiL project funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK).
Efficient power electronics supports the energy transition and stimulates economic growth
“Geopolitical challenges such as the current tariff conflicts are an opportunity for European economies to gain technological advantages in the key areas of energy generation and mobility by developing their own solutions in power electronics,” emphasizes Achim Lösch, Business Developer for High Frequency and Power Electronics at Fraunhofer IAF.
“The added value of innovative power electronics is obvious: Achieving more power, better efficiency, and greater compactness at the same time advances the relevant technologies of the future: Electric cars charge faster and energy from renewable sources can be converted and stored more efficiently. At Fraunhofer IAF, we are working intensively to provide positive impetus in these important areas through innovative GaN-based components,” explains Lösch.
Bidirectional 1200 V GaN switch (MBDS) with integrated free-wheeling diodes
Researchers at Fraunhofer IAF have developed a GaN MBDS suitable for the 1200 V voltage class with integrated free-wheeling diodes and successfully integrated it into their own GaN technology. The researchers used the new GaN-on-insulator technology of Fraunhofer IAF for the manufacturing: Highly insulating materials such as silicon carbide (SiC) and sapphire are used as the carrier substrate for the GaN power semiconductor to improve the insulation between the components and increase the breakdown voltage.
The MBDS blocks voltage and conducts current in two directions, which saves chip space and reduces conduction losses as there is only one split depletion region. The GaN MBDS can be used in grid-connected power converters for energy generation and storage as well as electric drive systems. In these applications, the MBDS enables the development of systems in the 1200 V class.
Developers are working intensively on electric vehicles in this voltage class as increasing blocking voltages offer significant advantages in terms of everyday usability: Charging power increases and energy losses during operation decrease as a result of lower resistance. Electric cars with 400 V currently dominate the market, but 800 V technology is gaining ground. The leap to 1200 V has a positive effect on the long-distance capability of electric cars and the utility value of electric trucks.
The 1200 V GaN MBDS with integrated peripherals will be presented by Dr. Michael Basler at the PCIM Conference on May 8 from 10:10 to 10:30 a.m. in the oral session on GaN Devices II on Stage München 1. It is based on Basler’s paper “Highly-Integrated 1200 V GaN-Based Monolithic Bidirectional Switch,” which will be published in conjunction with PCIM 2025.
Single-gate GaN HEMT as bidirectional switch in the low-voltage range
Fraunhofer IAF has also made progress in the field of multi-level converters with bidirectional switches for blocking voltages up to 48 V: Researchers have used a conventional single-gate HEMT (high electron mobility transistor) based on the aluminum gallium nitride/gallium nitride (AlGaN/GaN) compound semiconductor heterostructure in a low-voltage 3-level T-type converter as a bidirectional switch, thereby achieving simpler control of the transistor than with a bidirectional transistor with two gates for such topologies. Like the 1200 V MBDS, this innovative approach enables simpler control in addition to a space-efficient component design.
On May 6, Daniel Grieshaber will present the results shown in his paper “Investigation of a Single-Gate GaN HEMT as Bidirectional Switch in a Low Voltage Multilevel Topology” at the PCIM Conference Poster Session in the GaN Devices I section from 3:30 to 5:00 p.m. in the foyer.
PCIM Expo: GaN power electronics portfolio along the semiconductor value chain
In addition to innovations in the field of bidirectional switches, researchers at Fraunhofer IAF are working along the entire semiconductor value chain on materials, components, modules and subsystems for GaN-based power electronics in the voltage classes 48 V, 100 V, 200 V, 600 V and 1200 V. The current focus is on lateral and vertical components, monolithic integration, and highly insulating substrates such as sapphire or SiC. In addition to the results presented at PCIM 2025, Fraunhofer IAF is already working on components in the 1700 V class.
Fraunhofer IAF will be presenting an overview of its research and development portfolio in power electronics at the PCIM Expo in Hall 6, Booth 260, from May 6 to 8. Among others, an epitaxial 8-inch GaN wafer, processed 4-inch GaN-on-SiC and GaN-on-sapphire wafers, GaN power ICs, integrated lateral and vertical GaN components and 600 V half-bridge modules based on GaN are being exhibited.
At the PCIM Conference, Dr. Richard Reiner will also summarize the latest power electronics developments at Fraunhofer IAF in his presentation “Lateral, Vertical, Bidirectional! Innovations and Progress in GaN Devices and Power ICs.” It will take place on May 7 from 10:50 to 11:10 a.m. on the Technology Stage.
PCIM Conference: Presentations by Fraunhofer IAF on bidirectional GaN devices
May 6, Poster Presentations, GaN Devices I, 3:30–5:00 p.m., foyer
Daniel Grieshaber: Investigation of a Single-Gate GaN HEMT as Bidirectional Switch in a
Low Voltage Multilevel Topology
May 7, 10:50–11:10 a.m., Technology Stage
Richard Reiner: Lateral, Vertical, Bidirectional! Innovations and Progress in GaN Devices and Power ICs
May 8, Oral Session, GaN Devices II, Stage: München 1, 10:10–10:30 a.m.
Michael Basler: Highly-Integrated 1200 V GaN-Based Monolithic Bidirectional Switch
------------------------------------------------------------------------------------------------------
About Fraunhofer IAF
The Fraunhofer Institute for Applied Solid State Physics IAF is one of the world's leading research institutions in the fields of III-V semiconductors and synthetic diamond. Based on these materials, Fraunhofer IAF develops components for future-oriented technologies, such as electronic circuits for innovative communication and mobility solutions, laser systems for real-time spectroscopy, novel hardware components for quantum computing as well as quantum sensors for industrial applications. With its research and development, the Freiburg research institute covers the entire value chain — from materials research, design and processing to modules, systems and demonstrators. https://www.iaf.fraunhofer.de/en.html
https://www.iaf.fraunhofer.de/en/customers/electronic-circuits/power-electronics... — Power electronics at Fraunhofer IAF
https://www.iaf.fraunhofer.de/en/events/pcim-expo-and-conference.html — Visit Fraunhofer IAF at PCIM Expo & Conference 2025 in Hall 6, Booth 260
https://www.iaf.fraunhofer.de/en/events/pcim-expo-and-conference.html — Fraunhofer IAF at PCIM 2025
Monolithic bidirectional 1200 V GaN switches (MBDS) with integrated free-wheeling diodes, manufactur ...
© Fraunhofer IAF
Merkmale dieser Pressemitteilung:
Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
Elektrotechnik, Energie, Maschinenbau, Physik / Astronomie, Verkehr / Transport
überregional
Forschungsergebnisse, Wissenschaftliche Tagungen
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).