idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
10.09.2025 17:04

Wie sich Nanokatalysatoren während der Katalyse verändern

Dr. Antonia Rötger GF-KOM
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert.

    Nanopartikel messen im Durchmesser weniger als ein Zehntausendstel eines Millimeters, und besitzen im Verhältnis zu ihrer Masse gigantische Oberflächen. Das macht sie als Katalysatoren attraktiv: Metallische Nanopartikel helfen bei chemischen Umwandlungen, ob für den Umweltschutz, bei der industriellen Synthese oder bei der Produktion von (nachhaltigen) Brennstoffen aus CO2 und Wasserstoff.

    Platin (Pt) ist einer der bekanntesten Metallkatalysatoren und wird in der heterogenen Gasphasen-Katalyse zur Emissionskontrolle eingesetzt, zum Beispiel um in Autoabgasen von Verbrennungsmotoren giftiges Kohlenmonoxid in ungiftiges CO2 umzuwandeln. „Durch die Mischung von Platin-Partikeln mit dem Element Rhodium (Rh) lässt sich die Effizienz weiter steigern“, sagt die Erstautorin der Veröffentlichung, Jagrati Dwivedi. Dabei spielt es eine große Rolle, wo sich die beiden Elemente befinden. So genannte Kern-Schale-Nanopartikel mit einem Platin-Kern und einer extrem dünnen Rhodium-Schale können bei der Suche nach der optimalen Elementverteilung helfen, mit der die Lebensdauer der Nanopartikel verlängert werden kann.

    Bislang war jedoch wenig darüber bekannt, wie sich die chemische Zusammensetzung der Oberfläche eines Katalysators im Betrieb verändert. Ein Team um Dr. Thomas F. Keller, der am DESY NanoLab die Fachgruppe Mikroskopie leitet, hat nun an BESSY II solche kristallinen Pt-Rh Nanopartikel untersucht und neue Einblicke in die Veränderungen an den Facetten der polyederförmigen Nanopartikel gewonnen.

    Mit Rasterelektronenmikroskopie und Rasterkraftmikroskopie am DESY NanoLab wurden die Nanopartikel zunächst charakterisiert und mit Markierungen in deren Nähe ausgestattet. An BESSY II konnten dann anhand dieser Marker die exakt gleichen Nanopartikel an einem besonderen Instrument mit Röntgenlicht zeitgleich spektroskopisch analysiert und mikroskopisch abgebildet werden:

    Das SMART Instrument des Fritz-Haber-Instituts der Max-Planck-Gesellschaft erlaubt die Röntgenphotoelektronen-Spektroskopie im Mikroskop-Modus (X-ray photoemission electron microscopy, XPEEM). Dadurch lassen sich mit hoher Ortsauflösung einzelne Elemente unterscheiden, so dass die chemischen Prozesse an oberflächennahen Atomlagen beobachtet werden können. „Das Instrument ermöglicht die chemische Analyse einzelner Elemente mit einer Auflösung von 5-10 Nanometern, das ist einzigartig“, sagt Thomas Keller. Die Untersuchungen zeigen, dass Rhodium im Verlauf der Katalyse teilweise in die Platin-Kerne hineindiffundieren kann: Beide Elemente sind bei den typischen Einsatztemperaturen des Katalysators mischbar. Die Mischung wird in reduzierender Umgebung (H2) verstärkt und in oxidativer Umgebung (O2) gebremst, ohne den Netto-Fluss von Rhodium in Platin umzukehren. „Bei höherer Temperatur nimmt dieser Prozess sogar stark zu“, erklärt Keller.

    Die Reaktionsraten hängen auch von der Orientierung der kristallinen Facetten der Nanopartikel ab. „An manchen Facetten sind sie besonders hoch“ betont Jagrati Dwivedi: „Unsere facettenaufgelöste Studie zeigt die höchste Rhodium-Oxidation an Facetten, die viele atomare Stufen besitzen und an denen die Atome am leichtesten gebunden sind.“ Diese detaillierte Analyse des Oxidationsverhaltens trägt zur weiteren Optimierung solcher Nanokatalysatoren bei, die sich im Einsatz irreversibel verändern können.


    Wissenschaftliche Ansprechpartner:

    Priv. Doz.Dr. Ing. habil. Thomas F. Keller
    DESY NanoLab Mikroskopie, Centre for X-ray and Nano Science, DESY
    +49 (0)40 8998-6010
    thomas.keller@desy.de


    Originalpublikation:

    ACS Nano (2025): Spectro-Microscopy of Individual Pt–Rh Core–Shell Nanoparticles during Competing Oxidation and Alloying

    Jagrati Dwivedi, Lydia J. Bachmann, Arno Jeromin, Satishkumar Kulkarni, Heshmat Noei, Liviu C. Tănase, Aarti Tiwari, Lucas de Souza Caldas, Thomas Schmidt, Beatriz Roldan Cuenya, Andreas Stierle, Thomas F. Keller

    DOI: 10.1021/acsnano.5c07668


    Bilder

    Diese Aufnahme mit dem Rasterelektronenmikroskop zeigt mit Rhodium beschichtete Platin-Nanopartikel auf einem leitfähigen Substrat. Die kristallinen Facetten sind deutlich an der Polyederform der Nanopartikel zu erkennen.
    Diese Aufnahme mit dem Rasterelektronenmikroskop zeigt mit Rhodium beschichtete Platin-Nanopartikel ...

    Copyright: Arno Jeromin, DESY NanoLab


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Chemie, Energie, Physik / Astronomie, Umwelt / Ökologie
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).