idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
09.10.2025 11:37

Wie Pflanzen ihre Anpassung an Trockenheit steuern

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Ein bislang unbekannter molekularer Mechanismus hilft Pflanzen, bei extremer Trockenheit und intensiver Sonneneinstrahlung Wasser zu sparen. Wie ein Forschungsteam am Centre for Organismal Studies (COS) der Universität Heidelberg entdeckt hat, wirkt ein in den Chloroplasten vorkommender Eiweißkomplex – der Cystein-Synthase-Komplex – wie eine Art Sensor: Er nimmt sogenannte Stresssignale auf, leitet sie weiter und sorgt dafür, dass mittels Biosynthese das Hormon Abscisinsäure gebildet wird. Dieses Hormon löst das Schließen der winzigen Poren auf den Blättern aus, womit der Austritt von Wasser verhindert wird.

    Pressemitteilung
    Heidelberg, 9. Oktober 2025

    Wie Pflanzen ihre Anpassung an Trockenheit steuern
    Forschungsteam der Universität Heidelberg entdeckt molekularen Mechanismus, der für die Schließung der Poren auf den Blättern sorgt

    Ein bislang unbekannter molekularer Mechanismus hilft Pflanzen, bei extremer Trockenheit und intensiver Sonneneinstrahlung Wasser zu sparen. Wie ein Forschungsteam am Centre for Organismal Studies (COS) der Universität Heidelberg entdeckt hat, wirkt ein in den Chloroplasten vorkommender Eiweißkomplex – der Cystein-Synthase-Komplex – wie eine Art Sensor: Er nimmt sogenannte Stresssignale auf, leitet sie weiter und sorgt dafür, dass mittels Biosynthese das Hormon Abscisinsäure gebildet wird. Dieses Hormon löst das Schließen der winzigen Poren auf den Blättern aus, womit der Austritt von Wasser verhindert wird.

    Trockenperioden und intensive Sonneneinstrahlung bedeuten für Pflanzen oft einen übermäßigen Wasserverlust. Um den Austausch von Luft und Wasserdampf zu regeln, besitzen Pflanzenblätter mikroskopisch kleine Poren auf ihrer Oberfläche, die wie Ventile funktionieren. Das Pflanzenhormon Abscisinsäure – kurz ABA – sorgt in erster Linie dafür, dass sich diese Poren schließen. Um die Schließzellen zu aktivieren, wertet der in den Chloroplasten vorkommende Cystein-Synthase-Komplex, der aus zwei Enzymen besteht, mehrere verschiedene Signale aus: Dazu gehören das Nährstoffsignal Sulfat sowie ein kleines Eiweißmolekül – beide werden von der Wurzel in den Spross transportiert, wenn der Boden austrocknet. Außerdem entsteht bei starker Lichtintensität ein bestimmtes Pflanzenhormon, wie die Wissenschaftler der Universität Heidelberg herausgefunden haben.

    „Wenn der in den Chloroplasten lokalisierte Cystein-Synthase-Komplex durch eines dieser Stresssignale aktiviert wird, regt er die ABA-Biosynthese in den Schließzellen an und sorgt dafür, dass sich die Poren auf den Blättern schließen. Auf diese Weise spart die Pflanze Wasser“, wie Prof. Dr. Rüdiger Hell und Dr. Markus Wirtz von der am COS angesiedelten Forschungsgruppe „Molekulare Biologie der Pflanzen“ erläutern. „Unsere Ergebnisse zeigen, dass der Stoffwechsel in den Chloroplasten nicht nur Bausteine durch die Photosynthese liefert, sondern auch aktiv auf Stresssignale reagiert und so die Anpassungen der Pflanze an Umweltbedingungen wie Trockenheit genau steuert.“ Auf Basis dieser Erkenntnisse konnte bereits eine Arabidopsis-Pflanze – ein molekularbiologischer Modellorganismus aus der Familie der Kreuzblütler – erzeugt werden, die Trockenheit im Boden besser übersteht, ohne dabei im Wachstum beeinträchtigt zu werden. Für die Wissenschaftler ist dies ein Ansatz für die Entwicklung neuer Strategien, um Nutzpflanzen widerstandsfähiger gegen die Folgen des Klimawandels zu machen.

    Die Untersuchungen erfolgten in Zusammenarbeit mit Forscherinnen und Forschern der Nanjing Agricultural University (China). Die Deutsche Forschungsgemeinschaft hat die Forschungsarbeiten gefördert. Die Ergebnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

    Kontakt:
    Kommunikation und Marketing
    Pressestelle
    Tel. +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Originalpublikation:

    S.-K. Sun, N. Ahmad, H. Callenius, V. V. Uslu, H. Rajab, J. R. Cruz, F.-J. Zhao, M. Wirtz, R. Hell: The plastid cysteine synthase complex regulates ABA biosynthesis and stomatal closure in Arabidopsis. Nature Communications (published online 8 October 2025); DOI: 10.1038/s41467-025-64705-3


    Weitere Informationen:

    https://www.cos.uni-heidelberg.de/de/forschungsgruppen/molecular-biology-of-plan...
    https://www.cos.uni-heidelberg.de/en/research-groups/molecular-biology-of-plants...


    Bilder

    Wildtyp (links) und gentechnisch verbesserte Arabidopsispflanze (rechts) nach Trockenstress.
    Wildtyp (links) und gentechnisch verbesserte Arabidopsispflanze (rechts) nach Trockenstress.
    Quelle: Universität Heidelberg/COS
    Copyright: Universität Heidelberg/COS


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Meer / Klima, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).